Extensions 1→N→G→Q→1 with N=C4 and Q=C3×D4

Direct product G=N×Q with N=C4 and Q=C3×D4
dρLabelID
D4×C1248D4xC1296,165

Semidirect products G=N:Q with N=C4 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C41(C3×D4) = C3×C41D4φ: C3×D4/C12C2 ⊆ Aut C448C4:1(C3xD4)96,174
C42(C3×D4) = C3×C4⋊D4φ: C3×D4/C2×C6C2 ⊆ Aut C448C4:2(C3xD4)96,168

Non-split extensions G=N.Q with N=C4 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C4.1(C3×D4) = C3×D16φ: C3×D4/C12C2 ⊆ Aut C4482C4.1(C3xD4)96,61
C4.2(C3×D4) = C3×SD32φ: C3×D4/C12C2 ⊆ Aut C4482C4.2(C3xD4)96,62
C4.3(C3×D4) = C3×Q32φ: C3×D4/C12C2 ⊆ Aut C4962C4.3(C3xD4)96,63
C4.4(C3×D4) = C3×C4.4D4φ: C3×D4/C12C2 ⊆ Aut C448C4.4(C3xD4)96,171
C4.5(C3×D4) = C3×C4⋊Q8φ: C3×D4/C12C2 ⊆ Aut C496C4.5(C3xD4)96,175
C4.6(C3×D4) = C6×D8φ: C3×D4/C12C2 ⊆ Aut C448C4.6(C3xD4)96,179
C4.7(C3×D4) = C6×SD16φ: C3×D4/C12C2 ⊆ Aut C448C4.7(C3xD4)96,180
C4.8(C3×D4) = C6×Q16φ: C3×D4/C12C2 ⊆ Aut C496C4.8(C3xD4)96,181
C4.9(C3×D4) = C3×C4.D4φ: C3×D4/C2×C6C2 ⊆ Aut C4244C4.9(C3xD4)96,50
C4.10(C3×D4) = C3×C4.10D4φ: C3×D4/C2×C6C2 ⊆ Aut C4484C4.10(C3xD4)96,51
C4.11(C3×D4) = C3×D4⋊C4φ: C3×D4/C2×C6C2 ⊆ Aut C448C4.11(C3xD4)96,52
C4.12(C3×D4) = C3×Q8⋊C4φ: C3×D4/C2×C6C2 ⊆ Aut C496C4.12(C3xD4)96,53
C4.13(C3×D4) = C3×C22⋊Q8φ: C3×D4/C2×C6C2 ⊆ Aut C448C4.13(C3xD4)96,169
C4.14(C3×D4) = C3×C8⋊C22φ: C3×D4/C2×C6C2 ⊆ Aut C4244C4.14(C3xD4)96,183
C4.15(C3×D4) = C3×C8.C22φ: C3×D4/C2×C6C2 ⊆ Aut C4484C4.15(C3xD4)96,184
C4.16(C3×D4) = C3×C22⋊C8central extension (φ=1)48C4.16(C3xD4)96,48
C4.17(C3×D4) = C3×C4≀C2central extension (φ=1)242C4.17(C3xD4)96,54
C4.18(C3×D4) = C3×C4⋊C8central extension (φ=1)96C4.18(C3xD4)96,55
C4.19(C3×D4) = C3×C8.C4central extension (φ=1)482C4.19(C3xD4)96,58
C4.20(C3×D4) = C3×C4○D8central extension (φ=1)482C4.20(C3xD4)96,182

׿
×
𝔽