extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C3xD4) = C3xD16 | φ: C3xD4/C12 → C2 ⊆ Aut C4 | 48 | 2 | C4.1(C3xD4) | 96,61 |
C4.2(C3xD4) = C3xSD32 | φ: C3xD4/C12 → C2 ⊆ Aut C4 | 48 | 2 | C4.2(C3xD4) | 96,62 |
C4.3(C3xD4) = C3xQ32 | φ: C3xD4/C12 → C2 ⊆ Aut C4 | 96 | 2 | C4.3(C3xD4) | 96,63 |
C4.4(C3xD4) = C3xC4.4D4 | φ: C3xD4/C12 → C2 ⊆ Aut C4 | 48 | | C4.4(C3xD4) | 96,171 |
C4.5(C3xD4) = C3xC4:Q8 | φ: C3xD4/C12 → C2 ⊆ Aut C4 | 96 | | C4.5(C3xD4) | 96,175 |
C4.6(C3xD4) = C6xD8 | φ: C3xD4/C12 → C2 ⊆ Aut C4 | 48 | | C4.6(C3xD4) | 96,179 |
C4.7(C3xD4) = C6xSD16 | φ: C3xD4/C12 → C2 ⊆ Aut C4 | 48 | | C4.7(C3xD4) | 96,180 |
C4.8(C3xD4) = C6xQ16 | φ: C3xD4/C12 → C2 ⊆ Aut C4 | 96 | | C4.8(C3xD4) | 96,181 |
C4.9(C3xD4) = C3xC4.D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C4 | 24 | 4 | C4.9(C3xD4) | 96,50 |
C4.10(C3xD4) = C3xC4.10D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.10(C3xD4) | 96,51 |
C4.11(C3xD4) = C3xD4:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C4 | 48 | | C4.11(C3xD4) | 96,52 |
C4.12(C3xD4) = C3xQ8:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C4 | 96 | | C4.12(C3xD4) | 96,53 |
C4.13(C3xD4) = C3xC22:Q8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C4 | 48 | | C4.13(C3xD4) | 96,169 |
C4.14(C3xD4) = C3xC8:C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C4 | 24 | 4 | C4.14(C3xD4) | 96,183 |
C4.15(C3xD4) = C3xC8.C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.15(C3xD4) | 96,184 |
C4.16(C3xD4) = C3xC22:C8 | central extension (φ=1) | 48 | | C4.16(C3xD4) | 96,48 |
C4.17(C3xD4) = C3xC4wrC2 | central extension (φ=1) | 24 | 2 | C4.17(C3xD4) | 96,54 |
C4.18(C3xD4) = C3xC4:C8 | central extension (φ=1) | 96 | | C4.18(C3xD4) | 96,55 |
C4.19(C3xD4) = C3xC8.C4 | central extension (φ=1) | 48 | 2 | C4.19(C3xD4) | 96,58 |
C4.20(C3xD4) = C3xC4oD8 | central extension (φ=1) | 48 | 2 | C4.20(C3xD4) | 96,182 |