Copied to
clipboard

G = D4xC12order 96 = 25·3

Direct product of C12 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4xC12, C42:7C6, C4:C4:7C6, C4:1(C2xC12), C12:6(C2xC4), C12o2(C4:C4), C2.3(C6xD4), (C4xC12):11C2, C22:C4:6C6, (C22xC4):4C6, (C2xD4).7C6, C6.66(C2xD4), C22:2(C2xC12), (C22xC12):4C2, (C6xD4).14C2, C12o2(C22:C4), C6.39(C4oD4), (C2xC6).73C23, C2.4(C22xC12), C23.10(C2xC6), C6.32(C22xC4), C22.7(C22xC6), (C2xC12).121C22, (C22xC6).26C22, C4o2(C3xC4:C4), C4:C4o(C2xC12), (C2xC4)o(C6xD4), C12o2(C3xC4:C4), (C2xC6):4(C2xC4), (C2xC12)o(C6xD4), (C2xD4)o(C2xC12), (C3xC4:C4):16C2, C22:C4o(C2xC12), C4o2(C3xC22:C4), C2.2(C3xC4oD4), C12o2(C3xC22:C4), (C2xC4).15(C2xC6), (C3xC22:C4):14C2, (C2xC4)o(C3xC4:C4), (C2xC12)o(C3xC4:C4), (C2xC4)o(C3xC22:C4), (C2xC12)o(C3xC22:C4), SmallGroup(96,165)

Series: Derived Chief Lower central Upper central

C1C2 — D4xC12
C1C2C22C2xC6C2xC12C3xC22:C4 — D4xC12
C1C2 — D4xC12
C1C2xC12 — D4xC12

Generators and relations for D4xC12
 G = < a,b,c | a12=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 124 in 94 conjugacy classes, 64 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2xC4, C2xC4, C2xC4, D4, C23, C12, C12, C2xC6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C22xC4, C2xD4, C2xC12, C2xC12, C2xC12, C3xD4, C22xC6, C4xD4, C4xC12, C3xC22:C4, C3xC4:C4, C22xC12, C6xD4, D4xC12
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, D4, C23, C12, C2xC6, C22xC4, C2xD4, C4oD4, C2xC12, C3xD4, C22xC6, C4xD4, C22xC12, C6xD4, C3xC4oD4, D4xC12

Smallest permutation representation of D4xC12
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 41 24 30)(2 42 13 31)(3 43 14 32)(4 44 15 33)(5 45 16 34)(6 46 17 35)(7 47 18 36)(8 48 19 25)(9 37 20 26)(10 38 21 27)(11 39 22 28)(12 40 23 29)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 37)(33 38)(34 39)(35 40)(36 41)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,41,24,30)(2,42,13,31)(3,43,14,32)(4,44,15,33)(5,45,16,34)(6,46,17,35)(7,47,18,36)(8,48,19,25)(9,37,20,26)(10,38,21,27)(11,39,22,28)(12,40,23,29), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,41,24,30)(2,42,13,31)(3,43,14,32)(4,44,15,33)(5,45,16,34)(6,46,17,35)(7,47,18,36)(8,48,19,25)(9,37,20,26)(10,38,21,27)(11,39,22,28)(12,40,23,29), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,41,24,30),(2,42,13,31),(3,43,14,32),(4,44,15,33),(5,45,16,34),(6,46,17,35),(7,47,18,36),(8,48,19,25),(9,37,20,26),(10,38,21,27),(11,39,22,28),(12,40,23,29)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,37),(33,38),(34,39),(35,40),(36,41)]])

D4xC12 is a maximal subgroup of
C12.57D8  C12.50D8  C12.38SD16  D4.3Dic6  C42.47D6  C12:3M4(2)  C42.48D6  C12:7D8  D4.1D12  C42.51D6  D4.2D12  C42.102D6  D4:5Dic6  C42.104D6  C42.105D6  C42.106D6  D4:6Dic6  C42:13D6  C42.108D6  C42:14D6  C42.228D6  D12:23D4  D12:24D4  Dic6:23D4  Dic6:24D4  D4:5D12  D4:6D12  C42:18D6  C42.229D6  C42.113D6  C42.114D6  C42:19D6  C42.115D6  C42.116D6  C42.117D6  C42.118D6  C42.119D6

60 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C4D4E···4L6A···6F6G···6N12A···12H12I···12X
order122222223344444···46···66···612···1212···12
size111122221111112···21···12···21···12···2

60 irreducible representations

dim111111111111112222
type+++++++
imageC1C2C2C2C2C2C3C4C6C6C6C6C6C12D4C4oD4C3xD4C3xC4oD4
kernelD4xC12C4xC12C3xC22:C4C3xC4:C4C22xC12C6xD4C4xD4C3xD4C42C22:C4C4:C4C22xC4C2xD4D4C12C6C4C2
# reps1121212824242162244

Matrix representation of D4xC12 in GL3(F13) generated by

600
0100
0010
,
100
012
01212
,
100
010
01212
G:=sub<GL(3,GF(13))| [6,0,0,0,10,0,0,0,10],[1,0,0,0,1,12,0,2,12],[1,0,0,0,1,12,0,0,12] >;

D4xC12 in GAP, Magma, Sage, TeX

D_4\times C_{12}
% in TeX

G:=Group("D4xC12");
// GroupNames label

G:=SmallGroup(96,165);
// by ID

G=gap.SmallGroup(96,165);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-2,288,313,230]);
// Polycyclic

G:=Group<a,b,c|a^12=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<