Extensions 1→N→G→Q→1 with N=C3×D4 and Q=C4

Direct product G=N×Q with N=C3×D4 and Q=C4
dρLabelID
D4×C1248D4xC1296,165

Semidirect products G=N:Q with N=C3×D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1C4 = D4⋊Dic3φ: C4/C2C2 ⊆ Out C3×D448(C3xD4):1C496,39
(C3×D4)⋊2C4 = Q83Dic3φ: C4/C2C2 ⊆ Out C3×D4244(C3xD4):2C496,44
(C3×D4)⋊3C4 = D4×Dic3φ: C4/C2C2 ⊆ Out C3×D448(C3xD4):3C496,141
(C3×D4)⋊4C4 = C3×D4⋊C4φ: C4/C2C2 ⊆ Out C3×D448(C3xD4):4C496,52
(C3×D4)⋊5C4 = C3×C4≀C2φ: C4/C2C2 ⊆ Out C3×D4242(C3xD4):5C496,54

Non-split extensions G=N.Q with N=C3×D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×D4).C4 = D4.Dic3φ: C4/C2C2 ⊆ Out C3×D4484(C3xD4).C496,155
(C3×D4).2C4 = C3×C8○D4φ: trivial image482(C3xD4).2C496,178

׿
×
𝔽