Extensions 1→N→G→Q→1 with N=C4 and Q=C2×A4

Direct product G=N×Q with N=C4 and Q=C2×A4
dρLabelID
C2×C4×A424C2xC4xA496,196

Semidirect products G=N:Q with N=C4 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C4⋊(C2×A4) = D4×A4φ: C2×A4/A4C2 ⊆ Aut C4126+C4:(C2xA4)96,197

Non-split extensions G=N.Q with N=C4 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C4.1(C2×A4) = Q8×A4φ: C2×A4/A4C2 ⊆ Aut C4246-C4.1(C2xA4)96,199
C4.2(C2×A4) = Q8.A4φ: C2×A4/A4C2 ⊆ Aut C4244+C4.2(C2xA4)96,201
C4.3(C2×A4) = D4.A4φ: C2×A4/A4C2 ⊆ Aut C4164-C4.3(C2xA4)96,202
C4.4(C2×A4) = C8×A4central extension (φ=1)243C4.4(C2xA4)96,73
C4.5(C2×A4) = C8.A4central extension (φ=1)322C4.5(C2xA4)96,74
C4.6(C2×A4) = C2×C4.A4central extension (φ=1)32C4.6(C2xA4)96,200

׿
×
𝔽