Aliases: C8.A4, Q8.C12, C8○SL2(𝔽3), SL2(𝔽3).C4, C8○D4⋊C3, C8○(C4.A4), C4.5(C2×A4), C2.3(C4×A4), C4.A4.3C2, C4○D4.2C6, SmallGroup(96,74)
Series: Derived ►Chief ►Lower central ►Upper central
Q8 — C8.A4 |
Generators and relations for C8.A4
G = < a,b,c,d | a8=d3=1, b2=c2=a4, ab=ba, ac=ca, ad=da, cbc-1=a4b, dbd-1=a4bc, dcd-1=b >
Character table of C8.A4
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 8F | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 6 | 4 | 4 | 1 | 1 | 6 | 4 | 4 | 1 | 1 | 1 | 1 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ5 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | -i | i | i | i | -i | -1 | -1 | -1 | -1 | i | -i | i | i | -i | -i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | i | -i | -i | -i | i | -1 | -1 | -1 | -1 | -i | i | -i | -i | i | i | -i | i | linear of order 4 |
ρ9 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | -1 | 1 | ζ32 | ζ3 | -i | -i | i | i | i | -i | ζ65 | ζ6 | ζ65 | ζ6 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ4ζ32 | ζ43ζ3 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | linear of order 12 |
ρ10 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | -1 | 1 | ζ3 | ζ32 | i | i | -i | -i | -i | i | ζ6 | ζ65 | ζ6 | ζ65 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ43ζ3 | ζ4ζ32 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | linear of order 12 |
ρ11 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | -1 | 1 | ζ3 | ζ32 | -i | -i | i | i | i | -i | ζ6 | ζ65 | ζ6 | ζ65 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ4ζ3 | ζ43ζ32 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | linear of order 12 |
ρ12 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | -1 | 1 | ζ32 | ζ3 | i | i | -i | -i | -i | i | ζ65 | ζ6 | ζ65 | ζ6 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ43ζ32 | ζ4ζ3 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | linear of order 12 |
ρ13 | 2 | -2 | 0 | -1 | -1 | 2i | -2i | 0 | 1 | 1 | 2ζ8 | 2ζ85 | 2ζ83 | 2ζ87 | 0 | 0 | -i | -i | i | i | ζ83 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | ζ85 | complex faithful |
ρ14 | 2 | -2 | 0 | -1 | -1 | -2i | 2i | 0 | 1 | 1 | 2ζ83 | 2ζ87 | 2ζ8 | 2ζ85 | 0 | 0 | i | i | -i | -i | ζ8 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | ζ87 | complex faithful |
ρ15 | 2 | -2 | 0 | -1 | -1 | -2i | 2i | 0 | 1 | 1 | 2ζ87 | 2ζ83 | 2ζ85 | 2ζ8 | 0 | 0 | i | i | -i | -i | ζ85 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | ζ83 | complex faithful |
ρ16 | 2 | -2 | 0 | -1 | -1 | 2i | -2i | 0 | 1 | 1 | 2ζ85 | 2ζ8 | 2ζ87 | 2ζ83 | 0 | 0 | -i | -i | i | i | ζ87 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | ζ8 | complex faithful |
ρ17 | 2 | -2 | 0 | ζ6 | ζ65 | -2i | 2i | 0 | ζ3 | ζ32 | 2ζ87 | 2ζ83 | 2ζ85 | 2ζ8 | 0 | 0 | ζ82ζ32 | ζ82ζ3 | ζ86ζ32 | ζ86ζ3 | ζ85ζ32 | ζ87ζ3 | ζ8ζ3 | ζ85ζ3 | ζ83ζ32 | ζ87ζ32 | ζ8ζ32 | ζ83ζ3 | complex faithful |
ρ18 | 2 | -2 | 0 | ζ65 | ζ6 | -2i | 2i | 0 | ζ32 | ζ3 | 2ζ83 | 2ζ87 | 2ζ8 | 2ζ85 | 0 | 0 | ζ82ζ3 | ζ82ζ32 | ζ86ζ3 | ζ86ζ32 | ζ8ζ3 | ζ83ζ32 | ζ85ζ32 | ζ8ζ32 | ζ87ζ3 | ζ83ζ3 | ζ85ζ3 | ζ87ζ32 | complex faithful |
ρ19 | 2 | -2 | 0 | ζ65 | ζ6 | -2i | 2i | 0 | ζ32 | ζ3 | 2ζ87 | 2ζ83 | 2ζ85 | 2ζ8 | 0 | 0 | ζ82ζ3 | ζ82ζ32 | ζ86ζ3 | ζ86ζ32 | ζ85ζ3 | ζ87ζ32 | ζ8ζ32 | ζ85ζ32 | ζ83ζ3 | ζ87ζ3 | ζ8ζ3 | ζ83ζ32 | complex faithful |
ρ20 | 2 | -2 | 0 | ζ6 | ζ65 | -2i | 2i | 0 | ζ3 | ζ32 | 2ζ83 | 2ζ87 | 2ζ8 | 2ζ85 | 0 | 0 | ζ82ζ32 | ζ82ζ3 | ζ86ζ32 | ζ86ζ3 | ζ8ζ32 | ζ83ζ3 | ζ85ζ3 | ζ8ζ3 | ζ87ζ32 | ζ83ζ32 | ζ85ζ32 | ζ87ζ3 | complex faithful |
ρ21 | 2 | -2 | 0 | ζ65 | ζ6 | 2i | -2i | 0 | ζ32 | ζ3 | 2ζ85 | 2ζ8 | 2ζ87 | 2ζ83 | 0 | 0 | ζ86ζ3 | ζ86ζ32 | ζ82ζ3 | ζ82ζ32 | ζ87ζ3 | ζ85ζ32 | ζ83ζ32 | ζ87ζ32 | ζ8ζ3 | ζ85ζ3 | ζ83ζ3 | ζ8ζ32 | complex faithful |
ρ22 | 2 | -2 | 0 | ζ6 | ζ65 | 2i | -2i | 0 | ζ3 | ζ32 | 2ζ8 | 2ζ85 | 2ζ83 | 2ζ87 | 0 | 0 | ζ86ζ32 | ζ86ζ3 | ζ82ζ32 | ζ82ζ3 | ζ83ζ32 | ζ8ζ3 | ζ87ζ3 | ζ83ζ3 | ζ85ζ32 | ζ8ζ32 | ζ87ζ32 | ζ85ζ3 | complex faithful |
ρ23 | 2 | -2 | 0 | ζ65 | ζ6 | 2i | -2i | 0 | ζ32 | ζ3 | 2ζ8 | 2ζ85 | 2ζ83 | 2ζ87 | 0 | 0 | ζ86ζ3 | ζ86ζ32 | ζ82ζ3 | ζ82ζ32 | ζ83ζ3 | ζ8ζ32 | ζ87ζ32 | ζ83ζ32 | ζ85ζ3 | ζ8ζ3 | ζ87ζ3 | ζ85ζ32 | complex faithful |
ρ24 | 2 | -2 | 0 | ζ6 | ζ65 | 2i | -2i | 0 | ζ3 | ζ32 | 2ζ85 | 2ζ8 | 2ζ87 | 2ζ83 | 0 | 0 | ζ86ζ32 | ζ86ζ3 | ζ82ζ32 | ζ82ζ3 | ζ87ζ32 | ζ85ζ3 | ζ83ζ3 | ζ87ζ3 | ζ8ζ32 | ζ85ζ32 | ζ83ζ32 | ζ8ζ3 | complex faithful |
ρ25 | 3 | 3 | -1 | 0 | 0 | 3 | 3 | -1 | 0 | 0 | 3 | 3 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ26 | 3 | 3 | -1 | 0 | 0 | 3 | 3 | -1 | 0 | 0 | -3 | -3 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ27 | 3 | 3 | 1 | 0 | 0 | -3 | -3 | -1 | 0 | 0 | 3i | 3i | -3i | -3i | i | -i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4×A4 |
ρ28 | 3 | 3 | 1 | 0 | 0 | -3 | -3 | -1 | 0 | 0 | -3i | -3i | 3i | 3i | -i | i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4×A4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10 5 14)(2 11 6 15)(3 12 7 16)(4 13 8 9)(17 31 21 27)(18 32 22 28)(19 25 23 29)(20 26 24 30)
(1 19 5 23)(2 20 6 24)(3 21 7 17)(4 22 8 18)(9 28 13 32)(10 29 14 25)(11 30 15 26)(12 31 16 27)
(9 18 32)(10 19 25)(11 20 26)(12 21 27)(13 22 28)(14 23 29)(15 24 30)(16 17 31)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,5,14)(2,11,6,15)(3,12,7,16)(4,13,8,9)(17,31,21,27)(18,32,22,28)(19,25,23,29)(20,26,24,30), (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27), (9,18,32)(10,19,25)(11,20,26)(12,21,27)(13,22,28)(14,23,29)(15,24,30)(16,17,31)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,5,14)(2,11,6,15)(3,12,7,16)(4,13,8,9)(17,31,21,27)(18,32,22,28)(19,25,23,29)(20,26,24,30), (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27), (9,18,32)(10,19,25)(11,20,26)(12,21,27)(13,22,28)(14,23,29)(15,24,30)(16,17,31) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10,5,14),(2,11,6,15),(3,12,7,16),(4,13,8,9),(17,31,21,27),(18,32,22,28),(19,25,23,29),(20,26,24,30)], [(1,19,5,23),(2,20,6,24),(3,21,7,17),(4,22,8,18),(9,28,13,32),(10,29,14,25),(11,30,15,26),(12,31,16,27)], [(9,18,32),(10,19,25),(11,20,26),(12,21,27),(13,22,28),(14,23,29),(15,24,30),(16,17,31)]])
C8.A4 is a maximal subgroup of
C8.7S4 C16.A4 C8.S4 CU2(𝔽3) C8.5S4 C8.4S4 C8.3S4 M4(2).A4 Q16.A4 SD16.A4 D8.A4 SL2(𝔽3).Dic3 C8.A5 SL2(𝔽3).Dic5 SL2(𝔽3).F5
C8.A4 is a maximal quotient of
C8×SL2(𝔽3) Q8.C36 SL2(𝔽3).Dic3 SL2(𝔽3).Dic5 SL2(𝔽3).F5
Matrix representation of C8.A4 ►in GL2(𝔽17) generated by
2 | 0 |
0 | 2 |
4 | 0 |
3 | 13 |
13 | 5 |
0 | 4 |
16 | 13 |
13 | 0 |
G:=sub<GL(2,GF(17))| [2,0,0,2],[4,3,0,13],[13,0,5,4],[16,13,13,0] >;
C8.A4 in GAP, Magma, Sage, TeX
C_8.A_4
% in TeX
G:=Group("C8.A4");
// GroupNames label
G:=SmallGroup(96,74);
// by ID
G=gap.SmallGroup(96,74);
# by ID
G:=PCGroup([6,-2,-3,-2,-2,2,-2,36,158,297,117,550,202,88]);
// Polycyclic
G:=Group<a,b,c,d|a^8=d^3=1,b^2=c^2=a^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a^4*b,d*b*d^-1=a^4*b*c,d*c*d^-1=b>;
// generators/relations
Export
Subgroup lattice of C8.A4 in TeX
Character table of C8.A4 in TeX