Extensions 1→N→G→Q→1 with N=C4○D4 and Q=S3

Direct product G=N×Q with N=C4○D4 and Q=S3
dρLabelID
S3×C4○D4244S3xC4oD496,215

Semidirect products G=N:Q with N=C4○D4 and Q=S3
extensionφ:Q→Out NdρLabelID
C4○D41S3 = C4.6S4φ: S3/C1S3 ⊆ Out C4○D4162C4oD4:1S396,192
C4○D42S3 = C4.3S4φ: S3/C1S3 ⊆ Out C4○D4164+C4oD4:2S396,193
C4○D43S3 = D4⋊D6φ: S3/C3C2 ⊆ Out C4○D4244+C4oD4:3S396,156
C4○D44S3 = Q8.13D6φ: S3/C3C2 ⊆ Out C4○D4484C4oD4:4S396,157
C4○D45S3 = D4○D12φ: S3/C3C2 ⊆ Out C4○D4244+C4oD4:5S396,216
C4○D46S3 = Q8○D12φ: S3/C3C2 ⊆ Out C4○D4484-C4oD4:6S396,217

Non-split extensions G=N.Q with N=C4○D4 and Q=S3
extensionφ:Q→Out NdρLabelID
C4○D4.1S3 = U2(𝔽3)φ: S3/C1S3 ⊆ Out C4○D4242C4oD4.1S396,67
C4○D4.2S3 = C4.S4φ: S3/C1S3 ⊆ Out C4○D4324-C4oD4.2S396,191
C4○D4.3S3 = Q83Dic3φ: S3/C3C2 ⊆ Out C4○D4244C4oD4.3S396,44
C4○D4.4S3 = Q8.14D6φ: S3/C3C2 ⊆ Out C4○D4484-C4oD4.4S396,158
C4○D4.5S3 = D4.Dic3φ: trivial image484C4oD4.5S396,155

׿
×
𝔽