Copied to
clipboard

G = Q8.13D6order 96 = 25·3

3rd non-split extension by Q8 of D6 acting via D6/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.8D6, C12.57D4, Q8.13D6, C12.18C23, D12.12C22, Dic6.11C22, C4(D4⋊S3), D4⋊S37C2, C4○D44S3, C35(C4○D8), (C2×C6).9D4, C4○D124C2, C4(D4.S3), D4.S37C2, C4(C3⋊Q16), C3⋊Q167C2, (C2×C4).59D6, C6.60(C2×D4), C4(Q82S3), Q82S37C2, C3⋊C8.10C22, C4.32(C3⋊D4), C4.18(C22×S3), (C3×D4).8C22, (C3×Q8).8C22, (C2×C12).43C22, C22.1(C3⋊D4), (C2×C3⋊C8)⋊8C2, (C3×C4○D4)⋊2C2, C2.24(C2×C3⋊D4), SmallGroup(96,157)

Series: Derived Chief Lower central Upper central

C1C12 — Q8.13D6
C1C3C6C12D12C4○D12 — Q8.13D6
C3C6C12 — Q8.13D6
C1C4C2×C4C4○D4

Generators and relations for Q8.13D6
 G = < a,b,c,d | a4=1, b2=c6=d2=a2, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=c5 >

Subgroups: 138 in 62 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, C4○D4, C3⋊C8, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C4○D8, C2×C3⋊C8, D4⋊S3, D4.S3, Q82S3, C3⋊Q16, C4○D12, C3×C4○D4, Q8.13D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C4○D8, C2×C3⋊D4, Q8.13D6

Character table of Q8.13D6

 class 12A2B2C2D34A4B4C4D4E6A6B6C6D8A8B8C8D12A12B12C12D12E
 size 11241221124122444666622444
ρ1111111111111111111111111    trivial
ρ2111-1-11111-1-111-1-1111111-1-11    linear of order 2
ρ31111-111111-11111-1-1-1-111111    linear of order 2
ρ4111-111111-1111-1-1-1-1-1-111-1-11    linear of order 2
ρ511-11-11-1-11-111-1111-11-1-1-1-1-11    linear of order 2
ρ611-1-111-1-111-11-1-1-11-11-1-1-1111    linear of order 2
ρ711-1111-1-11-1-11-111-11-11-1-1-1-11    linear of order 2
ρ811-1-1-11-1-11111-1-1-1-11-11-1-1111    linear of order 2
ρ9222002-2-2-20022000000-2-200-2    orthogonal lifted from D4
ρ10222-20-1222-20-1-1110000-1-111-1    orthogonal lifted from D6
ρ1122220-122220-1-1-1-10000-1-1-1-1-1    orthogonal lifted from S3
ρ1222-200222-2002-20000002200-2    orthogonal lifted from D4
ρ1322-220-1-2-22-20-11-1-100001111-1    orthogonal lifted from D6
ρ1422-2-20-1-2-2220-1111000011-1-1-1    orthogonal lifted from D6
ρ1522200-1-2-2-200-1-1-3--3000011--3-31    complex lifted from C3⋊D4
ρ1622-200-122-200-11--3-30000-1-1--3-31    complex lifted from C3⋊D4
ρ1722-200-122-200-11-3--30000-1-1-3--31    complex lifted from C3⋊D4
ρ1822200-1-2-2-200-1-1--3-3000011-3--31    complex lifted from C3⋊D4
ρ192-200022i-2i000-2000--2-2-222i-2i000    complex lifted from C4○D8
ρ202-200022i-2i000-2000-22--2-22i-2i000    complex lifted from C4○D8
ρ212-20002-2i2i000-2000--22-2-2-2i2i000    complex lifted from C4○D8
ρ222-20002-2i2i000-2000-2-2--22-2i2i000    complex lifted from C4○D8
ρ234-4000-2-4i4i000200000002i-2i000    complex faithful
ρ244-4000-24i-4i00020000000-2i2i000    complex faithful

Smallest permutation representation of Q8.13D6
On 48 points
Generators in S48
(1 25 7 31)(2 26 8 32)(3 27 9 33)(4 28 10 34)(5 29 11 35)(6 30 12 36)(13 48 19 42)(14 37 20 43)(15 38 21 44)(16 39 22 45)(17 40 23 46)(18 41 24 47)
(1 37 7 43)(2 38 8 44)(3 39 9 45)(4 40 10 46)(5 41 11 47)(6 42 12 48)(13 30 19 36)(14 31 20 25)(15 32 21 26)(16 33 22 27)(17 34 23 28)(18 35 24 29)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 43 19 37)(14 48 20 42)(15 41 21 47)(16 46 22 40)(17 39 23 45)(18 44 24 38)(25 36 31 30)(26 29 32 35)(27 34 33 28)

G:=sub<Sym(48)| (1,25,7,31)(2,26,8,32)(3,27,9,33)(4,28,10,34)(5,29,11,35)(6,30,12,36)(13,48,19,42)(14,37,20,43)(15,38,21,44)(16,39,22,45)(17,40,23,46)(18,41,24,47), (1,37,7,43)(2,38,8,44)(3,39,9,45)(4,40,10,46)(5,41,11,47)(6,42,12,48)(13,30,19,36)(14,31,20,25)(15,32,21,26)(16,33,22,27)(17,34,23,28)(18,35,24,29), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,43,19,37)(14,48,20,42)(15,41,21,47)(16,46,22,40)(17,39,23,45)(18,44,24,38)(25,36,31,30)(26,29,32,35)(27,34,33,28)>;

G:=Group( (1,25,7,31)(2,26,8,32)(3,27,9,33)(4,28,10,34)(5,29,11,35)(6,30,12,36)(13,48,19,42)(14,37,20,43)(15,38,21,44)(16,39,22,45)(17,40,23,46)(18,41,24,47), (1,37,7,43)(2,38,8,44)(3,39,9,45)(4,40,10,46)(5,41,11,47)(6,42,12,48)(13,30,19,36)(14,31,20,25)(15,32,21,26)(16,33,22,27)(17,34,23,28)(18,35,24,29), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,43,19,37)(14,48,20,42)(15,41,21,47)(16,46,22,40)(17,39,23,45)(18,44,24,38)(25,36,31,30)(26,29,32,35)(27,34,33,28) );

G=PermutationGroup([[(1,25,7,31),(2,26,8,32),(3,27,9,33),(4,28,10,34),(5,29,11,35),(6,30,12,36),(13,48,19,42),(14,37,20,43),(15,38,21,44),(16,39,22,45),(17,40,23,46),(18,41,24,47)], [(1,37,7,43),(2,38,8,44),(3,39,9,45),(4,40,10,46),(5,41,11,47),(6,42,12,48),(13,30,19,36),(14,31,20,25),(15,32,21,26),(16,33,22,27),(17,34,23,28),(18,35,24,29)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,43,19,37),(14,48,20,42),(15,41,21,47),(16,46,22,40),(17,39,23,45),(18,44,24,38),(25,36,31,30),(26,29,32,35),(27,34,33,28)]])

Q8.13D6 is a maximal subgroup of
M4(2).22D6  C42.196D6  C24.100D4  C24.54D4  S3×C4○D8  SD16⋊D6  D85D6  D86D6  C24.C23  SD16.D6  C12.C24  D12.32C23  D12.33C23  D12.34C23  D12.35C23  D4.9D18  C12.11S4  D12.30D6  D12.27D6  D12.22D6  Dic6.20D6  D12.12D6  D12.13D6  C62.74D4  C12.14S4  D20.34D6  D20.31D6  D12.24D10  C60.16C23  D20.14D6  D20.D6  D4.8D30
Q8.13D6 is a maximal quotient of
C4⋊C4.233D6  C4⋊C4.234D6  C4.(C2×D12)  C4⋊C4.236D6  D4.3Dic6  C4×D4⋊S3  D4.1D12  C4×D4.S3  Q8.5Dic6  C4×Q82S3  Q8.6D12  C4×C3⋊Q16  C6.Q16⋊C2  D1217D4  C3⋊C822D4  C3⋊C823D4  (C2×Q8).51D6  D12.37D4  C3⋊C824D4  C3⋊C8.29D4  C42.61D6  C42.213D6  D12.23D4  C42.214D6  Dic6.4Q8  C42.215D6  D12.4Q8  C42.216D6  C4○D44Dic3  (C3×D4)⋊14D4  (C3×D4).32D4  D4.9D18  D12.30D6  D12.27D6  D12.22D6  Dic6.20D6  D12.12D6  D12.13D6  C62.74D4  D20.34D6  D20.31D6  D12.24D10  C60.16C23  D20.14D6  D20.D6  D4.8D30

Matrix representation of Q8.13D6 in GL4(𝔽5) generated by

4001
0041
3101
3001
,
4010
3011
3010
0410
,
0141
1202
0002
0032
,
2003
4303
0023
0003
G:=sub<GL(4,GF(5))| [4,0,3,3,0,0,1,0,0,4,0,0,1,1,1,1],[4,3,3,0,0,0,0,4,1,1,1,1,0,1,0,0],[0,1,0,0,1,2,0,0,4,0,0,3,1,2,2,2],[2,4,0,0,0,3,0,0,0,0,2,0,3,3,3,3] >;

Q8.13D6 in GAP, Magma, Sage, TeX

Q_8._{13}D_6
% in TeX

G:=Group("Q8.13D6");
// GroupNames label

G:=SmallGroup(96,157);
// by ID

G=gap.SmallGroup(96,157);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,218,579,159,69,2309]);
// Polycyclic

G:=Group<a,b,c,d|a^4=1,b^2=c^6=d^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^5>;
// generators/relations

Export

Character table of Q8.13D6 in TeX

׿
×
𝔽