Extensions 1→N→G→Q→1 with N=C24 and Q=C4

Direct product G=N×Q with N=C24 and Q=C4
dρLabelID
C4×C2496C4xC2496,46

Semidirect products G=N:Q with N=C24 and Q=C4
extensionφ:Q→Aut NdρLabelID
C241C4 = C241C4φ: C4/C2C2 ⊆ Aut C2496C24:1C496,25
C242C4 = C8⋊Dic3φ: C4/C2C2 ⊆ Aut C2496C24:2C496,24
C243C4 = C3×C2.D8φ: C4/C2C2 ⊆ Aut C2496C24:3C496,57
C244C4 = C8×Dic3φ: C4/C2C2 ⊆ Aut C2496C24:4C496,20
C245C4 = C24⋊C4φ: C4/C2C2 ⊆ Aut C2496C24:5C496,22
C246C4 = C3×C4.Q8φ: C4/C2C2 ⊆ Aut C2496C24:6C496,56
C247C4 = C3×C8⋊C4φ: C4/C2C2 ⊆ Aut C2496C24:7C496,47

Non-split extensions G=N.Q with N=C24 and Q=C4
extensionφ:Q→Aut NdρLabelID
C24.1C4 = C24.C4φ: C4/C2C2 ⊆ Aut C24482C24.1C496,26
C24.2C4 = C3⋊C32φ: C4/C2C2 ⊆ Aut C24962C24.2C496,1
C24.3C4 = C2×C3⋊C16φ: C4/C2C2 ⊆ Aut C2496C24.3C496,18
C24.4C4 = C12.C8φ: C4/C2C2 ⊆ Aut C24482C24.4C496,19
C24.5C4 = C3×C8.C4φ: C4/C2C2 ⊆ Aut C24482C24.5C496,58
C24.6C4 = C3×M5(2)φ: C4/C2C2 ⊆ Aut C24482C24.6C496,60

׿
×
𝔽