Extensions 1→N→G→Q→1 with N=C2×Dic6 and Q=C2

Direct product G=N×Q with N=C2×Dic6 and Q=C2
dρLabelID
C22×Dic696C2^2xDic696,205

Semidirect products G=N:Q with N=C2×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic6)⋊1C2 = C427S3φ: C2/C1C2 ⊆ Out C2×Dic648(C2xDic6):1C296,82
(C2×Dic6)⋊2C2 = Dic3.D4φ: C2/C1C2 ⊆ Out C2×Dic648(C2xDic6):2C296,85
(C2×Dic6)⋊3C2 = C23.11D6φ: C2/C1C2 ⊆ Out C2×Dic648(C2xDic6):3C296,92
(C2×Dic6)⋊4C2 = D6⋊Q8φ: C2/C1C2 ⊆ Out C2×Dic648(C2xDic6):4C296,103
(C2×Dic6)⋊5C2 = C2×C24⋊C2φ: C2/C1C2 ⊆ Out C2×Dic648(C2xDic6):5C296,109
(C2×Dic6)⋊6C2 = C12.48D4φ: C2/C1C2 ⊆ Out C2×Dic648(C2xDic6):6C296,131
(C2×Dic6)⋊7C2 = C4.D12φ: C2/C1C2 ⊆ Out C2×Dic648(C2xDic6):7C296,104
(C2×Dic6)⋊8C2 = C8.D6φ: C2/C1C2 ⊆ Out C2×Dic6484-(C2xDic6):8C296,116
(C2×Dic6)⋊9C2 = C2×D4.S3φ: C2/C1C2 ⊆ Out C2×Dic648(C2xDic6):9C296,140
(C2×Dic6)⋊10C2 = C23.12D6φ: C2/C1C2 ⊆ Out C2×Dic648(C2xDic6):10C296,143
(C2×Dic6)⋊11C2 = Q8.14D6φ: C2/C1C2 ⊆ Out C2×Dic6484-(C2xDic6):11C296,158
(C2×Dic6)⋊12C2 = C2×D42S3φ: C2/C1C2 ⊆ Out C2×Dic648(C2xDic6):12C296,210
(C2×Dic6)⋊13C2 = C2×S3×Q8φ: C2/C1C2 ⊆ Out C2×Dic648(C2xDic6):13C296,212
(C2×Dic6)⋊14C2 = Q8○D12φ: C2/C1C2 ⊆ Out C2×Dic6484-(C2xDic6):14C296,217
(C2×Dic6)⋊15C2 = C2×C4○D12φ: trivial image48(C2xDic6):15C296,208

Non-split extensions G=N.Q with N=C2×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic6).1C2 = C2.Dic12φ: C2/C1C2 ⊆ Out C2×Dic696(C2xDic6).1C296,23
(C2×Dic6).2C2 = C122Q8φ: C2/C1C2 ⊆ Out C2×Dic696(C2xDic6).2C296,76
(C2×Dic6).3C2 = C12⋊Q8φ: C2/C1C2 ⊆ Out C2×Dic696(C2xDic6).3C296,95
(C2×Dic6).4C2 = C2×Dic12φ: C2/C1C2 ⊆ Out C2×Dic696(C2xDic6).4C296,112
(C2×Dic6).5C2 = C6.SD16φ: C2/C1C2 ⊆ Out C2×Dic696(C2xDic6).5C296,17
(C2×Dic6).6C2 = C12.47D4φ: C2/C1C2 ⊆ Out C2×Dic6484-(C2xDic6).6C296,31
(C2×Dic6).7C2 = Dic6⋊C4φ: C2/C1C2 ⊆ Out C2×Dic696(C2xDic6).7C296,94
(C2×Dic6).8C2 = C2×C3⋊Q16φ: C2/C1C2 ⊆ Out C2×Dic696(C2xDic6).8C296,150
(C2×Dic6).9C2 = Dic3⋊Q8φ: C2/C1C2 ⊆ Out C2×Dic696(C2xDic6).9C296,151
(C2×Dic6).10C2 = C4×Dic6φ: trivial image96(C2xDic6).10C296,75

׿
×
𝔽