Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C2×C4

Direct product G=N×Q with N=C2 and Q=S3×C2×C4
dρLabelID
S3×C22×C448S3xC2^2xC496,206


Non-split extensions G=N.Q with N=C2 and Q=S3×C2×C4
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C2×C4) = S3×C42central extension (φ=1)48C2.1(S3xC2xC4)96,78
C2.2(S3×C2×C4) = S3×C2×C8central extension (φ=1)48C2.2(S3xC2xC4)96,106
C2.3(S3×C2×C4) = C2×C4×Dic3central extension (φ=1)96C2.3(S3xC2xC4)96,129
C2.4(S3×C2×C4) = C4×Dic6central stem extension (φ=1)96C2.4(S3xC2xC4)96,75
C2.5(S3×C2×C4) = C422S3central stem extension (φ=1)48C2.5(S3xC2xC4)96,79
C2.6(S3×C2×C4) = C4×D12central stem extension (φ=1)48C2.6(S3xC2xC4)96,80
C2.7(S3×C2×C4) = C23.16D6central stem extension (φ=1)48C2.7(S3xC2xC4)96,84
C2.8(S3×C2×C4) = S3×C22⋊C4central stem extension (φ=1)24C2.8(S3xC2xC4)96,87
C2.9(S3×C2×C4) = Dic34D4central stem extension (φ=1)48C2.9(S3xC2xC4)96,88
C2.10(S3×C2×C4) = Dic6⋊C4central stem extension (φ=1)96C2.10(S3xC2xC4)96,94
C2.11(S3×C2×C4) = S3×C4⋊C4central stem extension (φ=1)48C2.11(S3xC2xC4)96,98
C2.12(S3×C2×C4) = C4⋊C47S3central stem extension (φ=1)48C2.12(S3xC2xC4)96,99
C2.13(S3×C2×C4) = Dic35D4central stem extension (φ=1)48C2.13(S3xC2xC4)96,100
C2.14(S3×C2×C4) = C2×C8⋊S3central stem extension (φ=1)48C2.14(S3xC2xC4)96,107
C2.15(S3×C2×C4) = C8○D12central stem extension (φ=1)482C2.15(S3xC2xC4)96,108
C2.16(S3×C2×C4) = S3×M4(2)central stem extension (φ=1)244C2.16(S3xC2xC4)96,113
C2.17(S3×C2×C4) = D12.C4central stem extension (φ=1)484C2.17(S3xC2xC4)96,114
C2.18(S3×C2×C4) = C2×Dic3⋊C4central stem extension (φ=1)96C2.18(S3xC2xC4)96,130
C2.19(S3×C2×C4) = C2×D6⋊C4central stem extension (φ=1)48C2.19(S3xC2xC4)96,134
C2.20(S3×C2×C4) = C4×C3⋊D4central stem extension (φ=1)48C2.20(S3xC2xC4)96,135

׿
×
𝔽