metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C8oD12, C8oDic6, C8.18D6, D12.2C4, Dic6.2C4, C24.27C22, C12.37C23, (C2xC8):7S3, (S3xC8):6C2, C8o(C3:D4), C3:1(C8oD4), C8o(C8:S3), C8:S3:7C2, (C2xC24):12C2, C8o(C4oD12), C4.10(C4xS3), D6.1(C2xC4), (C2xC4).78D6, C3:D4.2C4, C12.20(C2xC4), C4oD12.6C2, C3:C8.11C22, C8o(C4.Dic3), C22.2(C4xS3), C4.Dic3:11C2, C4.37(C22xS3), C6.14(C22xC4), Dic3.3(C2xC4), (C4xS3).15C22, (C2xC12).98C22, C2.15(S3xC2xC4), (C2xC6).16(C2xC4), SmallGroup(96,108)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C8oD12
G = < a,b,c | a8=c2=1, b6=a4, ab=ba, ac=ca, cbc=a4b5 >
Subgroups: 114 in 62 conjugacy classes, 37 normal (23 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, Q8, Dic3, C12, D6, C2xC6, C2xC8, C2xC8, M4(2), C4oD4, C3:C8, C24, Dic6, C4xS3, D12, C3:D4, C2xC12, C8oD4, S3xC8, C8:S3, C4.Dic3, C2xC24, C4oD12, C8oD12
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D6, C22xC4, C4xS3, C22xS3, C8oD4, S3xC2xC4, C8oD12
(1 21 45 36 7 15 39 30)(2 22 46 25 8 16 40 31)(3 23 47 26 9 17 41 32)(4 24 48 27 10 18 42 33)(5 13 37 28 11 19 43 34)(6 14 38 29 12 20 44 35)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 19)(14 18)(15 17)(20 24)(21 23)(26 36)(27 35)(28 34)(29 33)(30 32)(37 43)(38 42)(39 41)(44 48)(45 47)
G:=sub<Sym(48)| (1,21,45,36,7,15,39,30)(2,22,46,25,8,16,40,31)(3,23,47,26,9,17,41,32)(4,24,48,27,10,18,42,33)(5,13,37,28,11,19,43,34)(6,14,38,29,12,20,44,35), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,3)(4,12)(5,11)(6,10)(7,9)(13,19)(14,18)(15,17)(20,24)(21,23)(26,36)(27,35)(28,34)(29,33)(30,32)(37,43)(38,42)(39,41)(44,48)(45,47)>;
G:=Group( (1,21,45,36,7,15,39,30)(2,22,46,25,8,16,40,31)(3,23,47,26,9,17,41,32)(4,24,48,27,10,18,42,33)(5,13,37,28,11,19,43,34)(6,14,38,29,12,20,44,35), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,3)(4,12)(5,11)(6,10)(7,9)(13,19)(14,18)(15,17)(20,24)(21,23)(26,36)(27,35)(28,34)(29,33)(30,32)(37,43)(38,42)(39,41)(44,48)(45,47) );
G=PermutationGroup([[(1,21,45,36,7,15,39,30),(2,22,46,25,8,16,40,31),(3,23,47,26,9,17,41,32),(4,24,48,27,10,18,42,33),(5,13,37,28,11,19,43,34),(6,14,38,29,12,20,44,35)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,19),(14,18),(15,17),(20,24),(21,23),(26,36),(27,35),(28,34),(29,33),(30,32),(37,43),(38,42),(39,41),(44,48),(45,47)]])
C8oD12 is a maximal subgroup of
D12.C8 Dic6.C8 D24:11C4 D24:4C4 C24.18D4 C24.19D4 C24.42D4 D12.4C8 C16.12D6 C24.100D4 C24.54D4 C24.23D4 C24.44D4 C24.29D4 M4(2):26D6 S3xC8oD4 M4(2):28D6 D8:13D6 SD16:13D6 D12.30D4 D8:15D6 D8:11D6 D8.10D6 D36.2C4 C24.63D6 C24.64D6 D12.2Dic3 C3:C8.22D6 C24.95D6 C40.54D6 C40.34D6 D12.2Dic5 D60.5C4 D60.6C4 D12.2F5 D60.C4 C5:C8.D6
C8oD12 is a maximal quotient of
C8xDic6 C24:12Q8 C8xD12 C8:6D12 D6.C42 C42.243D6 C24:C4:C2 D6:C8:C2 D6:2M4(2) Dic3:M4(2) C42.27D6 D6:3M4(2) C42.30D6 C42.31D6 C12.12C42 Dic3:C8:C2 C8xC3:D4 (C22xC8):7S3 C24:33D4 D36.2C4 C24.63D6 C24.64D6 D12.2Dic3 C3:C8.22D6 C24.95D6 C40.54D6 C40.34D6 D12.2Dic5 D60.5C4 D60.6C4 D12.2F5 D60.C4 C5:C8.D6
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 12A | 12B | 12C | 12D | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 6 | 6 | 2 | 1 | 1 | 2 | 6 | 6 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D6 | D6 | C4xS3 | C4xS3 | C8oD4 | C8oD12 |
kernel | C8oD12 | S3xC8 | C8:S3 | C4.Dic3 | C2xC24 | C4oD12 | Dic6 | D12 | C3:D4 | C2xC8 | C8 | C2xC4 | C4 | C22 | C3 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 4 | 1 | 2 | 1 | 2 | 2 | 4 | 8 |
Matrix representation of C8oD12 ►in GL2(F73) generated by
63 | 0 |
0 | 63 |
66 | 7 |
66 | 59 |
1 | 1 |
0 | 72 |
G:=sub<GL(2,GF(73))| [63,0,0,63],[66,66,7,59],[1,0,1,72] >;
C8oD12 in GAP, Magma, Sage, TeX
C_8\circ D_{12}
% in TeX
G:=Group("C8oD12");
// GroupNames label
G:=SmallGroup(96,108);
// by ID
G=gap.SmallGroup(96,108);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,50,69,2309]);
// Polycyclic
G:=Group<a,b,c|a^8=c^2=1,b^6=a^4,a*b=b*a,a*c=c*a,c*b*c=a^4*b^5>;
// generators/relations