Extensions 1→N→G→Q→1 with N=C2 and Q=D42S3

Direct product G=N×Q with N=C2 and Q=D42S3
dρLabelID
C2×D42S348C2xD4:2S396,210


Non-split extensions G=N.Q with N=C2 and Q=D42S3
extensionφ:Q→Aut NdρLabelID
C2.1(D42S3) = C23.16D6central extension (φ=1)48C2.1(D4:2S3)96,84
C2.2(D42S3) = Dic34D4central extension (φ=1)48C2.2(D4:2S3)96,88
C2.3(D42S3) = Dic6⋊C4central extension (φ=1)96C2.3(D4:2S3)96,94
C2.4(D42S3) = C4⋊C47S3central extension (φ=1)48C2.4(D4:2S3)96,99
C2.5(D42S3) = D4×Dic3central extension (φ=1)48C2.5(D4:2S3)96,141
C2.6(D42S3) = Dic3.D4central stem extension (φ=1)48C2.6(D4:2S3)96,85
C2.7(D42S3) = C23.8D6central stem extension (φ=1)48C2.7(D4:2S3)96,86
C2.8(D42S3) = C23.9D6central stem extension (φ=1)48C2.8(D4:2S3)96,90
C2.9(D42S3) = C23.11D6central stem extension (φ=1)48C2.9(D4:2S3)96,92
C2.10(D42S3) = C23.21D6central stem extension (φ=1)48C2.10(D4:2S3)96,93
C2.11(D42S3) = Dic3.Q8central stem extension (φ=1)96C2.11(D4:2S3)96,96
C2.12(D42S3) = C4.Dic6central stem extension (φ=1)96C2.12(D4:2S3)96,97
C2.13(D42S3) = C4.D12central stem extension (φ=1)48C2.13(D4:2S3)96,104
C2.14(D42S3) = C4⋊C4⋊S3central stem extension (φ=1)48C2.14(D4:2S3)96,105
C2.15(D42S3) = C23.23D6central stem extension (φ=1)48C2.15(D4:2S3)96,142
C2.16(D42S3) = C23.12D6central stem extension (φ=1)48C2.16(D4:2S3)96,143
C2.17(D42S3) = D63D4central stem extension (φ=1)48C2.17(D4:2S3)96,145
C2.18(D42S3) = C23.14D6central stem extension (φ=1)48C2.18(D4:2S3)96,146

׿
×
𝔽