Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C2xC6

Direct product G=NxQ with N=C2xC4 and Q=C2xC6
dρLabelID
C23xC1296C2^3xC1296,220

Semidirect products G=N:Q with N=C2xC4 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C2xC6) = C3xC22wrC2φ: C2xC6/C3C22 ⊆ Aut C2xC424(C2xC4):1(C2xC6)96,167
(C2xC4):2(C2xC6) = C3x2+ 1+4φ: C2xC6/C3C22 ⊆ Aut C2xC4244(C2xC4):2(C2xC6)96,224
(C2xC4):3(C2xC6) = C6xC22:C4φ: C2xC6/C6C2 ⊆ Aut C2xC448(C2xC4):3(C2xC6)96,162
(C2xC4):4(C2xC6) = D4xC2xC6φ: C2xC6/C6C2 ⊆ Aut C2xC448(C2xC4):4(C2xC6)96,221
(C2xC4):5(C2xC6) = C6xC4oD4φ: C2xC6/C6C2 ⊆ Aut C2xC448(C2xC4):5(C2xC6)96,223

Non-split extensions G=N.Q with N=C2xC4 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C2xC6) = C3xC4.D4φ: C2xC6/C3C22 ⊆ Aut C2xC4244(C2xC4).1(C2xC6)96,50
(C2xC4).2(C2xC6) = C3xC4.10D4φ: C2xC6/C3C22 ⊆ Aut C2xC4484(C2xC4).2(C2xC6)96,51
(C2xC4).3(C2xC6) = C3xC4:D4φ: C2xC6/C3C22 ⊆ Aut C2xC448(C2xC4).3(C2xC6)96,168
(C2xC4).4(C2xC6) = C3xC22:Q8φ: C2xC6/C3C22 ⊆ Aut C2xC448(C2xC4).4(C2xC6)96,169
(C2xC4).5(C2xC6) = C3xC22.D4φ: C2xC6/C3C22 ⊆ Aut C2xC448(C2xC4).5(C2xC6)96,170
(C2xC4).6(C2xC6) = C3xC4.4D4φ: C2xC6/C3C22 ⊆ Aut C2xC448(C2xC4).6(C2xC6)96,171
(C2xC4).7(C2xC6) = C3xC42.C2φ: C2xC6/C3C22 ⊆ Aut C2xC496(C2xC4).7(C2xC6)96,172
(C2xC4).8(C2xC6) = C3xC42:2C2φ: C2xC6/C3C22 ⊆ Aut C2xC448(C2xC4).8(C2xC6)96,173
(C2xC4).9(C2xC6) = C3xC4:Q8φ: C2xC6/C3C22 ⊆ Aut C2xC496(C2xC4).9(C2xC6)96,175
(C2xC4).10(C2xC6) = C3xC8:C22φ: C2xC6/C3C22 ⊆ Aut C2xC4244(C2xC4).10(C2xC6)96,183
(C2xC4).11(C2xC6) = C3xC8.C22φ: C2xC6/C3C22 ⊆ Aut C2xC4484(C2xC4).11(C2xC6)96,184
(C2xC4).12(C2xC6) = C3x2- 1+4φ: C2xC6/C3C22 ⊆ Aut C2xC4484(C2xC4).12(C2xC6)96,225
(C2xC4).13(C2xC6) = C6xC4:C4φ: C2xC6/C6C2 ⊆ Aut C2xC496(C2xC4).13(C2xC6)96,163
(C2xC4).14(C2xC6) = C3xC42:C2φ: C2xC6/C6C2 ⊆ Aut C2xC448(C2xC4).14(C2xC6)96,164
(C2xC4).15(C2xC6) = D4xC12φ: C2xC6/C6C2 ⊆ Aut C2xC448(C2xC4).15(C2xC6)96,165
(C2xC4).16(C2xC6) = Q8xC12φ: C2xC6/C6C2 ⊆ Aut C2xC496(C2xC4).16(C2xC6)96,166
(C2xC4).17(C2xC6) = C3xD4:C4φ: C2xC6/C6C2 ⊆ Aut C2xC448(C2xC4).17(C2xC6)96,52
(C2xC4).18(C2xC6) = C3xQ8:C4φ: C2xC6/C6C2 ⊆ Aut C2xC496(C2xC4).18(C2xC6)96,53
(C2xC4).19(C2xC6) = C3xC4wrC2φ: C2xC6/C6C2 ⊆ Aut C2xC4242(C2xC4).19(C2xC6)96,54
(C2xC4).20(C2xC6) = C3xC4.Q8φ: C2xC6/C6C2 ⊆ Aut C2xC496(C2xC4).20(C2xC6)96,56
(C2xC4).21(C2xC6) = C3xC2.D8φ: C2xC6/C6C2 ⊆ Aut C2xC496(C2xC4).21(C2xC6)96,57
(C2xC4).22(C2xC6) = C3xC8.C4φ: C2xC6/C6C2 ⊆ Aut C2xC4482(C2xC4).22(C2xC6)96,58
(C2xC4).23(C2xC6) = C3xC4:1D4φ: C2xC6/C6C2 ⊆ Aut C2xC448(C2xC4).23(C2xC6)96,174
(C2xC4).24(C2xC6) = C3xC8oD4φ: C2xC6/C6C2 ⊆ Aut C2xC4482(C2xC4).24(C2xC6)96,178
(C2xC4).25(C2xC6) = C6xD8φ: C2xC6/C6C2 ⊆ Aut C2xC448(C2xC4).25(C2xC6)96,179
(C2xC4).26(C2xC6) = C6xSD16φ: C2xC6/C6C2 ⊆ Aut C2xC448(C2xC4).26(C2xC6)96,180
(C2xC4).27(C2xC6) = C6xQ16φ: C2xC6/C6C2 ⊆ Aut C2xC496(C2xC4).27(C2xC6)96,181
(C2xC4).28(C2xC6) = C3xC4oD8φ: C2xC6/C6C2 ⊆ Aut C2xC4482(C2xC4).28(C2xC6)96,182
(C2xC4).29(C2xC6) = Q8xC2xC6φ: C2xC6/C6C2 ⊆ Aut C2xC496(C2xC4).29(C2xC6)96,222
(C2xC4).30(C2xC6) = C3xC8:C4central extension (φ=1)96(C2xC4).30(C2xC6)96,47
(C2xC4).31(C2xC6) = C3xC22:C8central extension (φ=1)48(C2xC4).31(C2xC6)96,48
(C2xC4).32(C2xC6) = C3xC4:C8central extension (φ=1)96(C2xC4).32(C2xC6)96,55
(C2xC4).33(C2xC6) = C6xM4(2)central extension (φ=1)48(C2xC4).33(C2xC6)96,177

׿
x
:
Z
F
o
wr
Q
<