Extensions 1→N→G→Q→1 with N=C4 and Q=C2×Dic3

Direct product G=N×Q with N=C4 and Q=C2×Dic3
dρLabelID
C2×C4×Dic396C2xC4xDic396,129

Semidirect products G=N:Q with N=C4 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C41(C2×Dic3) = D4×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C448C4:1(C2xDic3)96,141
C42(C2×Dic3) = C2×C4⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C496C4:2(C2xDic3)96,132

Non-split extensions G=N.Q with N=C4 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C4.1(C2×Dic3) = D4⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C448C4.1(C2xDic3)96,39
C4.2(C2×Dic3) = Q82Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C496C4.2(C2xDic3)96,42
C4.3(C2×Dic3) = Q83Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C4244C4.3(C2xDic3)96,44
C4.4(C2×Dic3) = Q8×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C496C4.4(C2xDic3)96,152
C4.5(C2×Dic3) = D4.Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C4484C4.5(C2xDic3)96,155
C4.6(C2×Dic3) = C8⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C496C4.6(C2xDic3)96,24
C4.7(C2×Dic3) = C241C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C496C4.7(C2xDic3)96,25
C4.8(C2×Dic3) = C24.C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C4482C4.8(C2xDic3)96,26
C4.9(C2×Dic3) = C2×C4.Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C448C4.9(C2xDic3)96,128
C4.10(C2×Dic3) = C2×C3⋊C16central extension (φ=1)96C4.10(C2xDic3)96,18
C4.11(C2×Dic3) = C12.C8central extension (φ=1)482C4.11(C2xDic3)96,19
C4.12(C2×Dic3) = C8×Dic3central extension (φ=1)96C4.12(C2xDic3)96,20
C4.13(C2×Dic3) = C24⋊C4central extension (φ=1)96C4.13(C2xDic3)96,22
C4.14(C2×Dic3) = C22×C3⋊C8central extension (φ=1)96C4.14(C2xDic3)96,127
C4.15(C2×Dic3) = C23.26D6central extension (φ=1)48C4.15(C2xDic3)96,133

׿
×
𝔽