d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C2×C10 | 60 | S3xC2xC10 | 120,45 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C10)⋊1S3 = C5×S4 | φ: S3/C1 → S3 ⊆ Aut C2×C10 | 20 | 3 | (C2xC10):1S3 | 120,37 |
(C2×C10)⋊2S3 = C5⋊S4 | φ: S3/C1 → S3 ⊆ Aut C2×C10 | 20 | 6+ | (C2xC10):2S3 | 120,38 |
(C2×C10)⋊3S3 = C5×C3⋊D4 | φ: S3/C3 → C2 ⊆ Aut C2×C10 | 60 | 2 | (C2xC10):3S3 | 120,25 |
(C2×C10)⋊4S3 = C15⋊7D4 | φ: S3/C3 → C2 ⊆ Aut C2×C10 | 60 | 2 | (C2xC10):4S3 | 120,30 |
(C2×C10)⋊5S3 = C22×D15 | φ: S3/C3 → C2 ⊆ Aut C2×C10 | 60 | (C2xC10):5S3 | 120,46 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C10).S3 = C2×Dic15 | φ: S3/C3 → C2 ⊆ Aut C2×C10 | 120 | (C2xC10).S3 | 120,29 | |
(C2×C10).2S3 = C10×Dic3 | central extension (φ=1) | 120 | (C2xC10).2S3 | 120,24 |