Extensions 1→N→G→Q→1 with N=C2×C10 and Q=S3

Direct product G=N×Q with N=C2×C10 and Q=S3
dρLabelID
S3×C2×C1060S3xC2xC10120,45

Semidirect products G=N:Q with N=C2×C10 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C10)⋊1S3 = C5×S4φ: S3/C1S3 ⊆ Aut C2×C10203(C2xC10):1S3120,37
(C2×C10)⋊2S3 = C5⋊S4φ: S3/C1S3 ⊆ Aut C2×C10206+(C2xC10):2S3120,38
(C2×C10)⋊3S3 = C5×C3⋊D4φ: S3/C3C2 ⊆ Aut C2×C10602(C2xC10):3S3120,25
(C2×C10)⋊4S3 = C157D4φ: S3/C3C2 ⊆ Aut C2×C10602(C2xC10):4S3120,30
(C2×C10)⋊5S3 = C22×D15φ: S3/C3C2 ⊆ Aut C2×C1060(C2xC10):5S3120,46

Non-split extensions G=N.Q with N=C2×C10 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C10).S3 = C2×Dic15φ: S3/C3C2 ⊆ Aut C2×C10120(C2xC10).S3120,29
(C2×C10).2S3 = C10×Dic3central extension (φ=1)120(C2xC10).2S3120,24

׿
×
𝔽