Copied to
clipboard

G = C7xD9order 126 = 2·32·7

Direct product of C7 and D9

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C7xD9, C9:C14, C63:2C2, C21.2S3, C3.(S3xC7), SmallGroup(126,3)

Series: Derived Chief Lower central Upper central

C1C9 — C7xD9
C1C3C9C63 — C7xD9
C9 — C7xD9
C1C7

Generators and relations for C7xD9
 G = < a,b,c | a7=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 32 in 12 conjugacy classes, 8 normal (all characteristic)
Quotients: C1, C2, S3, C7, C14, D9, S3xC7, C7xD9
9C2
3S3
9C14
3S3xC7

Smallest permutation representation of C7xD9
On 63 points
Generators in S63
(1 56 47 38 29 20 11)(2 57 48 39 30 21 12)(3 58 49 40 31 22 13)(4 59 50 41 32 23 14)(5 60 51 42 33 24 15)(6 61 52 43 34 25 16)(7 62 53 44 35 26 17)(8 63 54 45 36 27 18)(9 55 46 37 28 19 10)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
(1 9)(2 8)(3 7)(4 6)(10 11)(12 18)(13 17)(14 16)(19 20)(21 27)(22 26)(23 25)(28 29)(30 36)(31 35)(32 34)(37 38)(39 45)(40 44)(41 43)(46 47)(48 54)(49 53)(50 52)(55 56)(57 63)(58 62)(59 61)

G:=sub<Sym(63)| (1,56,47,38,29,20,11)(2,57,48,39,30,21,12)(3,58,49,40,31,22,13)(4,59,50,41,32,23,14)(5,60,51,42,33,24,15)(6,61,52,43,34,25,16)(7,62,53,44,35,26,17)(8,63,54,45,36,27,18)(9,55,46,37,28,19,10), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,9)(2,8)(3,7)(4,6)(10,11)(12,18)(13,17)(14,16)(19,20)(21,27)(22,26)(23,25)(28,29)(30,36)(31,35)(32,34)(37,38)(39,45)(40,44)(41,43)(46,47)(48,54)(49,53)(50,52)(55,56)(57,63)(58,62)(59,61)>;

G:=Group( (1,56,47,38,29,20,11)(2,57,48,39,30,21,12)(3,58,49,40,31,22,13)(4,59,50,41,32,23,14)(5,60,51,42,33,24,15)(6,61,52,43,34,25,16)(7,62,53,44,35,26,17)(8,63,54,45,36,27,18)(9,55,46,37,28,19,10), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,9)(2,8)(3,7)(4,6)(10,11)(12,18)(13,17)(14,16)(19,20)(21,27)(22,26)(23,25)(28,29)(30,36)(31,35)(32,34)(37,38)(39,45)(40,44)(41,43)(46,47)(48,54)(49,53)(50,52)(55,56)(57,63)(58,62)(59,61) );

G=PermutationGroup([[(1,56,47,38,29,20,11),(2,57,48,39,30,21,12),(3,58,49,40,31,22,13),(4,59,50,41,32,23,14),(5,60,51,42,33,24,15),(6,61,52,43,34,25,16),(7,62,53,44,35,26,17),(8,63,54,45,36,27,18),(9,55,46,37,28,19,10)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)], [(1,9),(2,8),(3,7),(4,6),(10,11),(12,18),(13,17),(14,16),(19,20),(21,27),(22,26),(23,25),(28,29),(30,36),(31,35),(32,34),(37,38),(39,45),(40,44),(41,43),(46,47),(48,54),(49,53),(50,52),(55,56),(57,63),(58,62),(59,61)]])

C7xD9 is a maximal subgroup of   C63:C6  C63:6C6

42 conjugacy classes

class 1  2  3 7A···7F9A9B9C14A···14F21A···21F63A···63R
order1237···799914···1421···2163···63
size1921···12229···92···22···2

42 irreducible representations

dim11112222
type++++
imageC1C2C7C14S3D9S3xC7C7xD9
kernelC7xD9C63D9C9C21C7C3C1
# reps116613618

Matrix representation of C7xD9 in GL2(F127) generated by

320
032
,
969
118105
,
10531
922
G:=sub<GL(2,GF(127))| [32,0,0,32],[96,118,9,105],[105,9,31,22] >;

C7xD9 in GAP, Magma, Sage, TeX

C_7\times D_9
% in TeX

G:=Group("C7xD9");
// GroupNames label

G:=SmallGroup(126,3);
// by ID

G=gap.SmallGroup(126,3);
# by ID

G:=PCGroup([4,-2,-7,-3,-3,842,82,1347]);
// Polycyclic

G:=Group<a,b,c|a^7=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C7xD9 in TeX

׿
x
:
Z
F
o
wr
Q
<