Extensions 1→N→G→Q→1 with N=S3xC10 and Q=C2

Direct product G=NxQ with N=S3xC10 and Q=C2
dρLabelID
S3xC2xC1060S3xC2xC10120,45

Semidirect products G=N:Q with N=S3xC10 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC10):1C2 = C15:D4φ: C2/C1C2 ⊆ Out S3xC10604-(S3xC10):1C2120,11
(S3xC10):2C2 = C5:D12φ: C2/C1C2 ⊆ Out S3xC10604+(S3xC10):2C2120,13
(S3xC10):3C2 = C2xS3xD5φ: C2/C1C2 ⊆ Out S3xC10304+(S3xC10):3C2120,42
(S3xC10):4C2 = C5xD12φ: C2/C1C2 ⊆ Out S3xC10602(S3xC10):4C2120,23
(S3xC10):5C2 = C5xC3:D4φ: C2/C1C2 ⊆ Out S3xC10602(S3xC10):5C2120,25

Non-split extensions G=N.Q with N=S3xC10 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC10).C2 = S3xDic5φ: C2/C1C2 ⊆ Out S3xC10604-(S3xC10).C2120,9
(S3xC10).2C2 = S3xC20φ: trivial image602(S3xC10).2C2120,22

׿
x
:
Z
F
o
wr
Q
<