direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×Dic5, D6.D5, C6.2D10, C10.2D6, Dic15⋊3C2, C30.2C22, C5⋊4(C4×S3), C15⋊5(C2×C4), (C5×S3)⋊2C4, (S3×C10).C2, C2.2(S3×D5), C3⋊1(C2×Dic5), (C3×Dic5)⋊1C2, SmallGroup(120,9)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — S3×Dic5 |
Generators and relations for S3×Dic5
G = < a,b,c,d | a3=b2=c10=1, d2=c5, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Character table of S3×Dic5
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 6 | 10A | 10B | 10C | 10D | 10E | 10F | 12A | 12B | 15A | 15B | 30A | 30B | |
size | 1 | 1 | 3 | 3 | 2 | 5 | 5 | 15 | 15 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 10 | 10 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | i | -i | i | -i | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | i | -i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | i | -i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | i | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -i | i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ12 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ15 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ19 | 2 | -2 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 2 | 2 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | i | -i | -1 | -1 | 1 | 1 | complex lifted from C4×S3 |
ρ20 | 2 | -2 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 2 | 2 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | -i | i | -1 | -1 | 1 | 1 | complex lifted from C4×S3 |
ρ21 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | -2 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from S3×D5 |
ρ22 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | -2 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from S3×D5 |
ρ23 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | symplectic faithful, Schur index 2 |
ρ24 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | symplectic faithful, Schur index 2 |
(1 21 40)(2 22 31)(3 23 32)(4 24 33)(5 25 34)(6 26 35)(7 27 36)(8 28 37)(9 29 38)(10 30 39)(11 51 47)(12 52 48)(13 53 49)(14 54 50)(15 55 41)(16 56 42)(17 57 43)(18 58 44)(19 59 45)(20 60 46)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 41)(21 35)(22 36)(23 37)(24 38)(25 39)(26 40)(27 31)(28 32)(29 33)(30 34)(51 56)(52 57)(53 58)(54 59)(55 60)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(1 56 6 51)(2 55 7 60)(3 54 8 59)(4 53 9 58)(5 52 10 57)(11 40 16 35)(12 39 17 34)(13 38 18 33)(14 37 19 32)(15 36 20 31)(21 42 26 47)(22 41 27 46)(23 50 28 45)(24 49 29 44)(25 48 30 43)
G:=sub<Sym(60)| (1,21,40)(2,22,31)(3,23,32)(4,24,33)(5,25,34)(6,26,35)(7,27,36)(8,28,37)(9,29,38)(10,30,39)(11,51,47)(12,52,48)(13,53,49)(14,54,50)(15,55,41)(16,56,42)(17,57,43)(18,58,44)(19,59,45)(20,60,46), (1,6)(2,7)(3,8)(4,9)(5,10)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,41)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,31)(28,32)(29,33)(30,34)(51,56)(52,57)(53,58)(54,59)(55,60), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,56,6,51)(2,55,7,60)(3,54,8,59)(4,53,9,58)(5,52,10,57)(11,40,16,35)(12,39,17,34)(13,38,18,33)(14,37,19,32)(15,36,20,31)(21,42,26,47)(22,41,27,46)(23,50,28,45)(24,49,29,44)(25,48,30,43)>;
G:=Group( (1,21,40)(2,22,31)(3,23,32)(4,24,33)(5,25,34)(6,26,35)(7,27,36)(8,28,37)(9,29,38)(10,30,39)(11,51,47)(12,52,48)(13,53,49)(14,54,50)(15,55,41)(16,56,42)(17,57,43)(18,58,44)(19,59,45)(20,60,46), (1,6)(2,7)(3,8)(4,9)(5,10)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,41)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,31)(28,32)(29,33)(30,34)(51,56)(52,57)(53,58)(54,59)(55,60), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,56,6,51)(2,55,7,60)(3,54,8,59)(4,53,9,58)(5,52,10,57)(11,40,16,35)(12,39,17,34)(13,38,18,33)(14,37,19,32)(15,36,20,31)(21,42,26,47)(22,41,27,46)(23,50,28,45)(24,49,29,44)(25,48,30,43) );
G=PermutationGroup([[(1,21,40),(2,22,31),(3,23,32),(4,24,33),(5,25,34),(6,26,35),(7,27,36),(8,28,37),(9,29,38),(10,30,39),(11,51,47),(12,52,48),(13,53,49),(14,54,50),(15,55,41),(16,56,42),(17,57,43),(18,58,44),(19,59,45),(20,60,46)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,41),(21,35),(22,36),(23,37),(24,38),(25,39),(26,40),(27,31),(28,32),(29,33),(30,34),(51,56),(52,57),(53,58),(54,59),(55,60)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(1,56,6,51),(2,55,7,60),(3,54,8,59),(4,53,9,58),(5,52,10,57),(11,40,16,35),(12,39,17,34),(13,38,18,33),(14,37,19,32),(15,36,20,31),(21,42,26,47),(22,41,27,46),(23,50,28,45),(24,49,29,44),(25,48,30,43)]])
S3×Dic5 is a maximal subgroup of
D6.F5 D12⋊D5 D12⋊5D5 C4×S3×D5 C30.C23 Dic3.D10 Dic15⋊S3 Dic5.6S4
S3×Dic5 is a maximal quotient of
D6.Dic5 D6⋊Dic5 C6.Dic10 Dic15⋊S3
Matrix representation of S3×Dic5 ►in GL4(𝔽61) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 60 |
0 | 0 | 1 | 60 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 60 |
0 | 0 | 60 | 0 |
0 | 1 | 0 | 0 |
60 | 17 | 0 | 0 |
0 | 0 | 60 | 0 |
0 | 0 | 0 | 60 |
25 | 30 | 0 | 0 |
28 | 36 | 0 | 0 |
0 | 0 | 11 | 0 |
0 | 0 | 0 | 11 |
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,60,60],[1,0,0,0,0,1,0,0,0,0,0,60,0,0,60,0],[0,60,0,0,1,17,0,0,0,0,60,0,0,0,0,60],[25,28,0,0,30,36,0,0,0,0,11,0,0,0,0,11] >;
S3×Dic5 in GAP, Magma, Sage, TeX
S_3\times {\rm Dic}_5
% in TeX
G:=Group("S3xDic5");
// GroupNames label
G:=SmallGroup(120,9);
// by ID
G=gap.SmallGroup(120,9);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-5,20,168,2404]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^10=1,d^2=c^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of S3×Dic5 in TeX
Character table of S3×Dic5 in TeX