direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2xS3xD5, C15:C23, C6:1D10, C10:1D6, C30:C22, D30:5C2, D15:C22, (C6xD5):3C2, (C5xS3):C22, C5:1(C22xS3), (C3xD5):C22, (S3xC10):3C2, C3:1(C22xD5), SmallGroup(120,42)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — C2xS3xD5 |
Generators and relations for C2xS3xD5
G = < a,b,c,d,e | a2=b3=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 260 in 64 conjugacy classes, 28 normal (14 characteristic)
C1, C2, C2, C3, C22, C5, S3, S3, C6, C6, C23, D5, D5, C10, C10, D6, D6, C2xC6, C15, D10, D10, C2xC10, C22xS3, C5xS3, C3xD5, D15, C30, C22xD5, S3xD5, C6xD5, S3xC10, D30, C2xS3xD5
Quotients: C1, C2, C22, S3, C23, D5, D6, D10, C22xS3, C22xD5, S3xD5, C2xS3xD5
Character table of C2xS3xD5
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 5A | 5B | 6A | 6B | 6C | 10A | 10B | 10C | 10D | 10E | 10F | 15A | 15B | 30A | 30B | |
size | 1 | 1 | 3 | 3 | 5 | 5 | 15 | 15 | 2 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -1 | 2 | 2 | -1 | 1 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 1 | 1 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | -1 | 2 | 2 | 1 | -1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | -2 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | -2 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ16 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | -2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | -2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ21 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -1+√5 | -1-√5 | -2 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from S3xD5 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -1+√5 | -1-√5 | 2 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal faithful |
ρ23 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -1-√5 | -1+√5 | -2 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from S3xD5 |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -1-√5 | -1+√5 | 2 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal faithful |
(1 19)(2 20)(3 16)(4 17)(5 18)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 26)(7 27)(8 28)(9 29)(10 30)(11 21)(12 22)(13 23)(14 24)(15 25)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 18)(2 17)(3 16)(4 20)(5 19)(6 21)(7 25)(8 24)(9 23)(10 22)(11 26)(12 30)(13 29)(14 28)(15 27)
G:=sub<Sym(30)| (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,19)(2,20)(3,16)(4,17)(5,18)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,18)(2,17)(3,16)(4,20)(5,19)(6,21)(7,25)(8,24)(9,23)(10,22)(11,26)(12,30)(13,29)(14,28)(15,27)>;
G:=Group( (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,19)(2,20)(3,16)(4,17)(5,18)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,18)(2,17)(3,16)(4,20)(5,19)(6,21)(7,25)(8,24)(9,23)(10,22)(11,26)(12,30)(13,29)(14,28)(15,27) );
G=PermutationGroup([[(1,19),(2,20),(3,16),(4,17),(5,18),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,26),(7,27),(8,28),(9,29),(10,30),(11,21),(12,22),(13,23),(14,24),(15,25)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,18),(2,17),(3,16),(4,20),(5,19),(6,21),(7,25),(8,24),(9,23),(10,22),(11,26),(12,30),(13,29),(14,28),(15,27)]])
G:=TransitiveGroup(30,21);
C2xS3xD5 is a maximal subgroup of
D6:F5 C20:D6 D10:D6
C2xS3xD5 is a maximal quotient of
D20:5S3 D20:S3 D12:D5 D60:C2 D15:Q8 D6.D10 D12:5D5 C12.28D10 C20:D6 Dic5.D6 C30.C23 Dic3.D10 D10:D6
Matrix representation of C2xS3xD5 ►in GL4(F31) generated by
30 | 0 | 0 | 0 |
0 | 30 | 0 | 0 |
0 | 0 | 30 | 0 |
0 | 0 | 0 | 30 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 10 |
0 | 0 | 9 | 29 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 30 | 21 |
0 | 0 | 0 | 1 |
19 | 1 | 0 | 0 |
11 | 30 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
30 | 30 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(31))| [30,0,0,0,0,30,0,0,0,0,30,0,0,0,0,30],[1,0,0,0,0,1,0,0,0,0,1,9,0,0,10,29],[1,0,0,0,0,1,0,0,0,0,30,0,0,0,21,1],[19,11,0,0,1,30,0,0,0,0,1,0,0,0,0,1],[30,0,0,0,30,1,0,0,0,0,1,0,0,0,0,1] >;
C2xS3xD5 in GAP, Magma, Sage, TeX
C_2\times S_3\times D_5
% in TeX
G:=Group("C2xS3xD5");
// GroupNames label
G:=SmallGroup(120,42);
// by ID
G=gap.SmallGroup(120,42);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-5,168,2404]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export