Extensions 1→N→G→Q→1 with N=C21 and Q=C6

Direct product G=N×Q with N=C21 and Q=C6
dρLabelID
C3×C42126C3xC42126,16

Semidirect products G=N:Q with N=C21 and Q=C6
extensionφ:Q→Aut NdρLabelID
C211C6 = C3⋊F7φ: C6/C1C6 ⊆ Aut C21216+C21:1C6126,9
C212C6 = C3×F7φ: C6/C1C6 ⊆ Aut C21216C21:2C6126,7
C213C6 = S3×C7⋊C3φ: C6/C1C6 ⊆ Aut C21216C21:3C6126,8
C214C6 = C6×C7⋊C3φ: C6/C2C3 ⊆ Aut C21423C21:4C6126,10
C215C6 = C3×D21φ: C6/C3C2 ⊆ Aut C21422C21:5C6126,13
C216C6 = C32×D7φ: C6/C3C2 ⊆ Aut C2163C21:6C6126,11
C217C6 = S3×C21φ: C6/C3C2 ⊆ Aut C21422C21:7C6126,12

Non-split extensions G=N.Q with N=C21 and Q=C6
extensionφ:Q→Aut NdρLabelID
C21.C6 = C7⋊C18φ: C6/C1C6 ⊆ Aut C21636C21.C6126,1
C21.2C6 = C2×C7⋊C9φ: C6/C2C3 ⊆ Aut C211263C21.2C6126,2
C21.3C6 = C9×D7φ: C6/C3C2 ⊆ Aut C21632C21.3C6126,4

׿
×
𝔽