direct product, metacyclic, supersoluble, monomial, A-group
Aliases: S3×C7⋊C3, C21⋊3C6, (S3×C7)⋊C3, C7⋊2(C3×S3), C3⋊(C2×C7⋊C3), (C3×C7⋊C3)⋊3C2, SmallGroup(126,8)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C21 — C3×C7⋊C3 — S3×C7⋊C3 |
C21 — S3×C7⋊C3 |
Generators and relations for S3×C7⋊C3
G = < a,b,c,d | a3=b2=c7=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
Character table of S3×C7⋊C3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 7A | 7B | 14A | 14B | 21A | 21B | |
size | 1 | 3 | 2 | 7 | 7 | 14 | 14 | 21 | 21 | 3 | 3 | 9 | 9 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 6 |
ρ5 | 1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 6 |
ρ6 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | complex lifted from C3×S3 |
ρ9 | 2 | 0 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | complex lifted from C3×S3 |
ρ10 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ11 | 3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 1-√-7/2 | 1+√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ12 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ13 | 3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 1+√-7/2 | 1-√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ14 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7 | -1+√-7 | 0 | 0 | 1-√-7/2 | 1+√-7/2 | complex faithful |
ρ15 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7 | -1-√-7 | 0 | 0 | 1+√-7/2 | 1-√-7/2 | complex faithful |
(1 8 15)(2 9 16)(3 10 17)(4 11 18)(5 12 19)(6 13 20)(7 14 21)
(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)
G:=sub<Sym(21)| (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)>;
G:=Group( (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20) );
G=PermutationGroup([[(1,8,15),(2,9,16),(3,10,17),(4,11,18),(5,12,19),(6,13,20),(7,14,21)], [(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20)]])
G:=TransitiveGroup(21,11);
S3×C7⋊C3 is a maximal subgroup of
C63⋊C6 C63⋊6C6 C7⋊He3⋊C2
S3×C7⋊C3 is a maximal quotient of C63⋊C6 C63⋊6C6 C7⋊He3⋊C2
Matrix representation of S3×C7⋊C3 ►in GL5(𝔽43)
42 | 42 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
42 | 42 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 42 | 42 | 18 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 25 |
36 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 19 | 1 |
0 | 0 | 1 | 1 | 25 |
0 | 0 | 0 | 25 | 42 |
G:=sub<GL(5,GF(43))| [42,1,0,0,0,42,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,42,0,0,0,0,42,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,42,1,0,0,0,42,0,1,0,0,18,1,25],[36,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,19,1,25,0,0,1,25,42] >;
S3×C7⋊C3 in GAP, Magma, Sage, TeX
S_3\times C_7\rtimes C_3
% in TeX
G:=Group("S3xC7:C3");
// GroupNames label
G:=SmallGroup(126,8);
// by ID
G=gap.SmallGroup(126,8);
# by ID
G:=PCGroup([4,-2,-3,-3,-7,146,295]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^7=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations
Export
Subgroup lattice of S3×C7⋊C3 in TeX
Character table of S3×C7⋊C3 in TeX