Copied to
clipboard

G = C24:1C4:C2order 192 = 26·3

9th semidirect product of C24:1C4 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6:C8:7C2, C24:1C4:9C2, (C2xC8).11D6, D4:C4:7S3, C4:C4.138D6, (C2xD4).30D6, D6:3D4.6C2, C6.25(C4oD8), C12.Q8:7C2, C4.54(C4oD12), D4:Dic3:10C2, C2.12(Q8:3D6), C6.56(C8:C22), (C2xC24).11C22, (C6xD4).45C22, (C22xS3).16D4, C22.182(S3xD4), C12.152(C4oD4), C4.81(D4:2S3), C2.11(D8:3S3), (C2xC12).224C23, (C2xDic3).144D4, C3:3(C23.19D4), C4:Dic3.76C22, C2.15(C23.9D6), C6.23(C22.D4), C4:C4:7S3:4C2, (C3xD4:C4):7C2, (C2xC6).237(C2xD4), (C2xC3:C8).22C22, (S3xC2xC4).16C22, (C3xC4:C4).25C22, (C2xC4).331(C22xS3), SmallGroup(192,343)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C24:1C4:C2
C1C3C6C2xC6C2xC12S3xC2xC4C4:C4:7S3 — C24:1C4:C2
C3C6C2xC12 — C24:1C4:C2
C1C22C2xC4D4:C4

Generators and relations for C24:1C4:C2
 G = < a,b,c | a24=b4=c2=1, bab-1=a-1, cac=a19b2, cbc=b-1 >

Subgroups: 328 in 106 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C22xC4, C2xD4, C2xD4, C3:C8, C24, C4xS3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xC6, C22:C8, D4:C4, D4:C4, C4.Q8, C2.D8, C42:C2, C4:D4, C2xC3:C8, C4xDic3, C4:Dic3, D6:C4, C6.D4, C3xC4:C4, C2xC24, S3xC2xC4, C2xC3:D4, C6xD4, C23.19D4, C12.Q8, C24:1C4, D6:C8, D4:Dic3, C3xD4:C4, C4:C4:7S3, D6:3D4, C24:1C4:C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C22xS3, C22.D4, C4oD8, C8:C22, C4oD12, S3xD4, D4:2S3, C23.19D4, C23.9D6, D8:3S3, Q8:3D6, C24:1C4:C2

Smallest permutation representation of C24:1C4:C2
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 52 25 74)(2 51 26 73)(3 50 27 96)(4 49 28 95)(5 72 29 94)(6 71 30 93)(7 70 31 92)(8 69 32 91)(9 68 33 90)(10 67 34 89)(11 66 35 88)(12 65 36 87)(13 64 37 86)(14 63 38 85)(15 62 39 84)(16 61 40 83)(17 60 41 82)(18 59 42 81)(19 58 43 80)(20 57 44 79)(21 56 45 78)(22 55 46 77)(23 54 47 76)(24 53 48 75)
(1 52)(2 93)(3 66)(4 83)(5 56)(6 73)(7 70)(8 87)(9 60)(10 77)(11 50)(12 91)(13 64)(14 81)(15 54)(16 95)(17 68)(18 85)(19 58)(20 75)(21 72)(22 89)(23 62)(24 79)(25 74)(26 71)(27 88)(28 61)(29 78)(30 51)(31 92)(32 65)(33 82)(34 55)(35 96)(36 69)(37 86)(38 59)(39 76)(40 49)(41 90)(42 63)(43 80)(44 53)(45 94)(46 67)(47 84)(48 57)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,52,25,74)(2,51,26,73)(3,50,27,96)(4,49,28,95)(5,72,29,94)(6,71,30,93)(7,70,31,92)(8,69,32,91)(9,68,33,90)(10,67,34,89)(11,66,35,88)(12,65,36,87)(13,64,37,86)(14,63,38,85)(15,62,39,84)(16,61,40,83)(17,60,41,82)(18,59,42,81)(19,58,43,80)(20,57,44,79)(21,56,45,78)(22,55,46,77)(23,54,47,76)(24,53,48,75), (1,52)(2,93)(3,66)(4,83)(5,56)(6,73)(7,70)(8,87)(9,60)(10,77)(11,50)(12,91)(13,64)(14,81)(15,54)(16,95)(17,68)(18,85)(19,58)(20,75)(21,72)(22,89)(23,62)(24,79)(25,74)(26,71)(27,88)(28,61)(29,78)(30,51)(31,92)(32,65)(33,82)(34,55)(35,96)(36,69)(37,86)(38,59)(39,76)(40,49)(41,90)(42,63)(43,80)(44,53)(45,94)(46,67)(47,84)(48,57)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,52,25,74)(2,51,26,73)(3,50,27,96)(4,49,28,95)(5,72,29,94)(6,71,30,93)(7,70,31,92)(8,69,32,91)(9,68,33,90)(10,67,34,89)(11,66,35,88)(12,65,36,87)(13,64,37,86)(14,63,38,85)(15,62,39,84)(16,61,40,83)(17,60,41,82)(18,59,42,81)(19,58,43,80)(20,57,44,79)(21,56,45,78)(22,55,46,77)(23,54,47,76)(24,53,48,75), (1,52)(2,93)(3,66)(4,83)(5,56)(6,73)(7,70)(8,87)(9,60)(10,77)(11,50)(12,91)(13,64)(14,81)(15,54)(16,95)(17,68)(18,85)(19,58)(20,75)(21,72)(22,89)(23,62)(24,79)(25,74)(26,71)(27,88)(28,61)(29,78)(30,51)(31,92)(32,65)(33,82)(34,55)(35,96)(36,69)(37,86)(38,59)(39,76)(40,49)(41,90)(42,63)(43,80)(44,53)(45,94)(46,67)(47,84)(48,57) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,52,25,74),(2,51,26,73),(3,50,27,96),(4,49,28,95),(5,72,29,94),(6,71,30,93),(7,70,31,92),(8,69,32,91),(9,68,33,90),(10,67,34,89),(11,66,35,88),(12,65,36,87),(13,64,37,86),(14,63,38,85),(15,62,39,84),(16,61,40,83),(17,60,41,82),(18,59,42,81),(19,58,43,80),(20,57,44,79),(21,56,45,78),(22,55,46,77),(23,54,47,76),(24,53,48,75)], [(1,52),(2,93),(3,66),(4,83),(5,56),(6,73),(7,70),(8,87),(9,60),(10,77),(11,50),(12,91),(13,64),(14,81),(15,54),(16,95),(17,68),(18,85),(19,58),(20,75),(21,72),(22,89),(23,62),(24,79),(25,74),(26,71),(27,88),(28,61),(29,78),(30,51),(31,92),(32,65),(33,82),(34,55),(35,96),(36,69),(37,86),(38,59),(39,76),(40,49),(41,90),(42,63),(43,80),(44,53),(45,94),(46,67),(47,84),(48,57)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222234444444446666688881212121224242424
size111181222244661212242228844121244884444

33 irreducible representations

dim1111111122222222244444
type+++++++++++++++-+-+
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6C4oD4C4oD8C4oD12C8:C22D4:2S3S3xD4D8:3S3Q8:3D6
kernelC24:1C4:C2C12.Q8C24:1C4D6:C8D4:Dic3C3xD4:C4C4:C4:7S3D6:3D4D4:C4C2xDic3C22xS3C4:C4C2xC8C2xD4C12C6C4C6C4C22C2C2
# reps1111111111111144411122

Matrix representation of C24:1C4:C2 in GL4(F73) generated by

51000
06300
006666
00759
,
07200
1000
006043
003013
,
0100
1000
004360
001330
G:=sub<GL(4,GF(73))| [51,0,0,0,0,63,0,0,0,0,66,7,0,0,66,59],[0,1,0,0,72,0,0,0,0,0,60,30,0,0,43,13],[0,1,0,0,1,0,0,0,0,0,43,13,0,0,60,30] >;

C24:1C4:C2 in GAP, Magma, Sage, TeX

C_{24}\rtimes_1C_4\rtimes C_2
% in TeX

G:=Group("C24:1C4:C2");
// GroupNames label

G:=SmallGroup(192,343);
// by ID

G=gap.SmallGroup(192,343);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,64,926,219,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^-1,c*a*c=a^19*b^2,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<