Copied to
clipboard

G = D6:3D4order 96 = 25·3

3rd semidirect product of D6 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6:3D4, C12:2D4, C23.13D6, (C6xD4):3C2, (C2xD4):4S3, C4:2(C3:D4), C3:4(C4:D4), (C2xC4).51D6, C6.50(C2xD4), C2.26(S3xD4), C4:Dic3:14C2, C6.31(C4oD4), (C2xC6).53C23, C6.D4:11C2, (C2xC12).34C22, C2.17(D4:2S3), (C22xC6).20C22, C22.60(C22xS3), (C22xS3).26C22, (C2xDic3).19C22, (S3xC2xC4):2C2, (C2xC3:D4):5C2, C2.14(C2xC3:D4), SmallGroup(96,145)

Series: Derived Chief Lower central Upper central

C1C2xC6 — D6:3D4
C1C3C6C2xC6C22xS3S3xC2xC4 — D6:3D4
C3C2xC6 — D6:3D4
C1C22C2xD4

Generators and relations for D6:3D4
 G = < a,b,c,d | a6=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a3b, dcd=c-1 >

Subgroups: 226 in 94 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C2xD4, C4xS3, C2xDic3, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, C4:D4, C4:Dic3, C6.D4, S3xC2xC4, C2xC3:D4, C6xD4, D6:3D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C3:D4, C22xS3, C4:D4, S3xD4, D4:2S3, C2xC3:D4, D6:3D4

Character table of D6:3D4

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F6A6B6C6D6E6F6G12A12B
 size 11114466222661212222444444
ρ1111111111111111111111111    trivial
ρ21111-11111-1-1-1-11-1111-111-1-1-1    linear of order 2
ρ31111-11-1-11-1-111-11111-111-1-1-1    linear of order 2
ρ4111111-1-1111-1-1-1-1111111111    linear of order 2
ρ511111-1111-1-1-1-1-111111-1-11-1-1    linear of order 2
ρ61111-1-11111111-1-1111-1-1-1-111    linear of order 2
ρ71111-1-1-1-1111-1-111111-1-1-1-111    linear of order 2
ρ811111-1-1-11-1-1111-11111-1-11-1-1    linear of order 2
ρ92-22-2002-22000000-22-2000000    orthogonal lifted from D4
ρ102-2-2200002-220000-2-220000-22    orthogonal lifted from D4
ρ1122222-200-1-2-20000-1-1-1-111-111    orthogonal lifted from D6
ρ122-2-22000022-20000-2-2200002-2    orthogonal lifted from D4
ρ1322222200-1220000-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ142222-2-200-1220000-1-1-11111-1-1    orthogonal lifted from D6
ρ152222-2200-1-2-20000-1-1-11-1-1111    orthogonal lifted from D6
ρ162-22-200-222000000-22-2000000    orthogonal lifted from D4
ρ172-2-220000-1-22000011-1--3--3-3-31-1    complex lifted from C3:D4
ρ182-2-220000-1-22000011-1-3-3--3--31-1    complex lifted from C3:D4
ρ192-2-220000-12-2000011-1-3--3-3--3-11    complex lifted from C3:D4
ρ202-2-220000-12-2000011-1--3-3--3-3-11    complex lifted from C3:D4
ρ2122-2-200002002i-2i002-2-2000000    complex lifted from C4oD4
ρ2222-2-20000200-2i2i002-2-2000000    complex lifted from C4oD4
ρ234-44-40000-20000002-22000000    orthogonal lifted from S3xD4
ρ2444-4-40000-2000000-222000000    symplectic lifted from D4:2S3, Schur index 2

Smallest permutation representation of D6:3D4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(8 12)(9 11)(13 14)(15 18)(16 17)(19 21)(22 24)(25 29)(26 28)(31 36)(32 35)(33 34)(37 38)(39 42)(40 41)(43 45)(46 48)
(1 41 17 34)(2 42 18 35)(3 37 13 36)(4 38 14 31)(5 39 15 32)(6 40 16 33)(7 27 44 20)(8 28 45 21)(9 29 46 22)(10 30 47 23)(11 25 48 24)(12 26 43 19)
(1 46)(2 47)(3 48)(4 43)(5 44)(6 45)(7 15)(8 16)(9 17)(10 18)(11 13)(12 14)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(8,12)(9,11)(13,14)(15,18)(16,17)(19,21)(22,24)(25,29)(26,28)(31,36)(32,35)(33,34)(37,38)(39,42)(40,41)(43,45)(46,48), (1,41,17,34)(2,42,18,35)(3,37,13,36)(4,38,14,31)(5,39,15,32)(6,40,16,33)(7,27,44,20)(8,28,45,21)(9,29,46,22)(10,30,47,23)(11,25,48,24)(12,26,43,19), (1,46)(2,47)(3,48)(4,43)(5,44)(6,45)(7,15)(8,16)(9,17)(10,18)(11,13)(12,14)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(8,12)(9,11)(13,14)(15,18)(16,17)(19,21)(22,24)(25,29)(26,28)(31,36)(32,35)(33,34)(37,38)(39,42)(40,41)(43,45)(46,48), (1,41,17,34)(2,42,18,35)(3,37,13,36)(4,38,14,31)(5,39,15,32)(6,40,16,33)(7,27,44,20)(8,28,45,21)(9,29,46,22)(10,30,47,23)(11,25,48,24)(12,26,43,19), (1,46)(2,47)(3,48)(4,43)(5,44)(6,45)(7,15)(8,16)(9,17)(10,18)(11,13)(12,14)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(8,12),(9,11),(13,14),(15,18),(16,17),(19,21),(22,24),(25,29),(26,28),(31,36),(32,35),(33,34),(37,38),(39,42),(40,41),(43,45),(46,48)], [(1,41,17,34),(2,42,18,35),(3,37,13,36),(4,38,14,31),(5,39,15,32),(6,40,16,33),(7,27,44,20),(8,28,45,21),(9,29,46,22),(10,30,47,23),(11,25,48,24),(12,26,43,19)], [(1,46),(2,47),(3,48),(4,43),(5,44),(6,45),(7,15),(8,16),(9,17),(10,18),(11,13),(12,14),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42)]])

D6:3D4 is a maximal subgroup of
D6.D8  D6:D8  D6.SD16  D6:SD16  D6:C8:11C2  C3:C8:1D4  C3:C8:D4  C24:1C4:C2  D12:D4  D6:3D8  Dic6:D4  C24:12D4  D6:8SD16  C24:14D4  D12:7D4  C24:8D4  C42.228D6  D12:24D4  C42.229D6  C42.113D6  C42.115D6  C42.116D6  C42.117D6  C24:7D6  C24.44D6  C24.46D6  C24.47D6  S3xC4:D4  C4:C4:21D6  C6.382+ 1+4  C6.722- 1+4  C6.732- 1+4  D12:20D4  C6.422+ 1+4  C6.432+ 1+4  C6.442+ 1+4  C6.452+ 1+4  C6.1152+ 1+4  C6.472+ 1+4  C6.482+ 1+4  C6.492+ 1+4  C6.612+ 1+4  C6.632+ 1+4  C6.642+ 1+4  C6.692+ 1+4  D12:10D4  Dic6:10D4  C42.234D6  C42.144D6  C42.238D6  D12:11D4  Dic6:11D4  C42.168D6  D4xC3:D4  C24.52D6  C24.53D6  (C2xD4):43D6  C6.1072- 1+4  C6.1082- 1+4  C6.1482+ 1+4  C36:2D4  D6:2D12  C12:2D12  C62.100C23  C62.112C23  C62.256C23  C60:4D4  C12:2D20  D30:6D4  (S3xC10):D4  C60:2D4
D6:3D4 is a maximal quotient of
C24.14D6  C24.17D6  C24.23D6  C24.27D6  C12:(C4:C4)  (C2xDic3).Q8  C4:(D6:C4)  (C2xC12).289D4  C42.61D6  D12.23D4  C12:2D8  Dic6:9D4  C12:5SD16  C12:Q16  D6:3D8  C24:12D4  C24.23D4  C24:14D4  C24:8D4  C24.44D4  D6:3Q16  C24.36D4  C24.29D4  C24.30D6  C24.31D6  C24.32D6  C36:2D4  D6:2D12  C12:2D12  C62.100C23  C62.112C23  C62.256C23  C60:4D4  C12:2D20  D30:6D4  (S3xC10):D4  C60:2D4

Matrix representation of D6:3D4 in GL4(F13) generated by

0100
12100
00120
00012
,
11200
01200
00120
0001
,
12000
01200
0050
0008
,
2900
41100
0008
0050
G:=sub<GL(4,GF(13))| [0,12,0,0,1,1,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,12,12,0,0,0,0,12,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,5,0,0,0,0,8],[2,4,0,0,9,11,0,0,0,0,0,5,0,0,8,0] >;

D6:3D4 in GAP, Magma, Sage, TeX

D_6\rtimes_3D_4
% in TeX

G:=Group("D6:3D4");
// GroupNames label

G:=SmallGroup(96,145);
// by ID

G=gap.SmallGroup(96,145);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,218,188,2309]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of D6:3D4 in TeX

׿
x
:
Z
F
o
wr
Q
<