extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C4xD4) = C2.(C4xD12) | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 192 | | C6.1(C4xD4) | 192,212 |
C6.2(C4xD4) = (C2xC4):9D12 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 96 | | C6.2(C4xD4) | 192,224 |
C6.3(C4xD4) = D6:C4:C4 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 96 | | C6.3(C4xD4) | 192,227 |
C6.4(C4xD4) = C8xD12 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 96 | | C6.4(C4xD4) | 192,245 |
C6.5(C4xD4) = C8:6D12 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 96 | | C6.5(C4xD4) | 192,247 |
C6.6(C4xD4) = C4xC24:C2 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 96 | | C6.6(C4xD4) | 192,250 |
C6.7(C4xD4) = C4xD24 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 96 | | C6.7(C4xD4) | 192,251 |
C6.8(C4xD4) = C4xDic12 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 192 | | C6.8(C4xD4) | 192,257 |
C6.9(C4xD4) = D24:11C4 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 48 | 2 | C6.9(C4xD4) | 192,259 |
C6.10(C4xD4) = C8:9D12 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 96 | | C6.10(C4xD4) | 192,265 |
C6.11(C4xD4) = C42.16D6 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 96 | | C6.11(C4xD4) | 192,269 |
C6.12(C4xD4) = D24:C4 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 96 | | C6.12(C4xD4) | 192,270 |
C6.13(C4xD4) = Dic12:C4 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 192 | | C6.13(C4xD4) | 192,275 |
C6.14(C4xD4) = D24:4C4 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 48 | 4 | C6.14(C4xD4) | 192,276 |
C6.15(C4xD4) = C12:4(C4:C4) | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 192 | | C6.15(C4xD4) | 192,487 |
C6.16(C4xD4) = C4xC4:Dic3 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 192 | | C6.16(C4xD4) | 192,493 |
C6.17(C4xD4) = C4xD6:C4 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 96 | | C6.17(C4xD4) | 192,497 |
C6.18(C4xD4) = (C2xC4):6D12 | φ: C4xD4/C42 → C2 ⊆ Aut C6 | 96 | | C6.18(C4xD4) | 192,498 |
C6.19(C4xD4) = C6.(C4xQ8) | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 192 | | C6.19(C4xD4) | 192,206 |
C6.20(C4xD4) = Dic3:C42 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 192 | | C6.20(C4xD4) | 192,208 |
C6.21(C4xD4) = C6.(C4xD4) | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 192 | | C6.21(C4xD4) | 192,211 |
C6.22(C4xD4) = Dic3:C4:C4 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 192 | | C6.22(C4xD4) | 192,214 |
C6.23(C4xD4) = D6:C42 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.23(C4xD4) | 192,225 |
C6.24(C4xD4) = D6:C4:5C4 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.24(C4xD4) | 192,228 |
C6.25(C4xD4) = D6:C4:3C4 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.25(C4xD4) | 192,229 |
C6.26(C4xD4) = C3:D4:C8 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.26(C4xD4) | 192,284 |
C6.27(C4xD4) = D6:2M4(2) | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.27(C4xD4) | 192,287 |
C6.28(C4xD4) = Dic3:M4(2) | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.28(C4xD4) | 192,288 |
C6.29(C4xD4) = C3:C8:26D4 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.29(C4xD4) | 192,289 |
C6.30(C4xD4) = Dic3:4D8 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.30(C4xD4) | 192,315 |
C6.31(C4xD4) = D4.S3:C4 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.31(C4xD4) | 192,316 |
C6.32(C4xD4) = Dic3:6SD16 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.32(C4xD4) | 192,317 |
C6.33(C4xD4) = D4:S3:C4 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.33(C4xD4) | 192,344 |
C6.34(C4xD4) = Dic3:7SD16 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.34(C4xD4) | 192,347 |
C6.35(C4xD4) = C3:Q16:C4 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 192 | | C6.35(C4xD4) | 192,348 |
C6.36(C4xD4) = Dic3:4Q16 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 192 | | C6.36(C4xD4) | 192,349 |
C6.37(C4xD4) = Q8:3(C4xS3) | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.37(C4xD4) | 192,376 |
C6.38(C4xD4) = M4(2).22D6 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 48 | 4 | C6.38(C4xD4) | 192,382 |
C6.39(C4xD4) = C42.196D6 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 48 | 4 | C6.39(C4xD4) | 192,383 |
C6.40(C4xD4) = Dic3xC22:C4 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.40(C4xD4) | 192,500 |
C6.41(C4xD4) = C24.14D6 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.41(C4xD4) | 192,503 |
C6.42(C4xD4) = C24.15D6 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.42(C4xD4) | 192,504 |
C6.43(C4xD4) = C24.57D6 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.43(C4xD4) | 192,505 |
C6.44(C4xD4) = C24.60D6 | φ: C4xD4/C22:C4 → C2 ⊆ Aut C6 | 96 | | C6.44(C4xD4) | 192,517 |
C6.45(C4xD4) = C2.(C4xDic6) | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.45(C4xD4) | 192,213 |
C6.46(C4xD4) = D12:C8 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 96 | | C6.46(C4xD4) | 192,393 |
C6.47(C4xD4) = D6:3M4(2) | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 96 | | C6.47(C4xD4) | 192,395 |
C6.48(C4xD4) = C12:2M4(2) | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 96 | | C6.48(C4xD4) | 192,397 |
C6.49(C4xD4) = Dic3:8SD16 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 96 | | C6.49(C4xD4) | 192,411 |
C6.50(C4xD4) = Dic12:9C4 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.50(C4xD4) | 192,412 |
C6.51(C4xD4) = D24:9C4 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 96 | | C6.51(C4xD4) | 192,428 |
C6.52(C4xD4) = Dic3:5D8 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 96 | | C6.52(C4xD4) | 192,431 |
C6.53(C4xD4) = Dic3:5Q16 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.53(C4xD4) | 192,432 |
C6.54(C4xD4) = C24:C2:C4 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 96 | | C6.54(C4xD4) | 192,448 |
C6.55(C4xD4) = D24:10C4 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 48 | 4 | C6.55(C4xD4) | 192,453 |
C6.56(C4xD4) = D24:7C4 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 48 | 4 | C6.56(C4xD4) | 192,454 |
C6.57(C4xD4) = C12:(C4:C4) | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.57(C4xD4) | 192,531 |
C6.58(C4xD4) = Dic3xC4:C4 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.58(C4xD4) | 192,533 |
C6.59(C4xD4) = (C2xD12):10C4 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 96 | | C6.59(C4xD4) | 192,547 |
C6.60(C4xD4) = D6:C4:7C4 | φ: C4xD4/C4:C4 → C2 ⊆ Aut C6 | 96 | | C6.60(C4xD4) | 192,549 |
C6.61(C4xD4) = C4xDic3:C4 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 192 | | C6.61(C4xD4) | 192,490 |
C6.62(C4xD4) = (C2xC42).6S3 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 192 | | C6.62(C4xD4) | 192,492 |
C6.63(C4xD4) = (C2xC42):3S3 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.63(C4xD4) | 192,499 |
C6.64(C4xD4) = C24.23D6 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.64(C4xD4) | 192,515 |
C6.65(C4xD4) = C24.24D6 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.65(C4xD4) | 192,516 |
C6.66(C4xD4) = Dic3:(C4:C4) | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 192 | | C6.66(C4xD4) | 192,535 |
C6.67(C4xD4) = C6.67(C4xD4) | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 192 | | C6.67(C4xD4) | 192,537 |
C6.68(C4xD4) = D6:C4:6C4 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.68(C4xD4) | 192,548 |
C6.69(C4xD4) = C4xD4:S3 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.69(C4xD4) | 192,572 |
C6.70(C4xD4) = C42.48D6 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.70(C4xD4) | 192,573 |
C6.71(C4xD4) = C4xD4.S3 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.71(C4xD4) | 192,576 |
C6.72(C4xD4) = C42.51D6 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.72(C4xD4) | 192,577 |
C6.73(C4xD4) = C4xQ8:2S3 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.73(C4xD4) | 192,584 |
C6.74(C4xD4) = C42.56D6 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.74(C4xD4) | 192,585 |
C6.75(C4xD4) = C4xC3:Q16 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 192 | | C6.75(C4xD4) | 192,588 |
C6.76(C4xD4) = C42.59D6 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 192 | | C6.76(C4xD4) | 192,589 |
C6.77(C4xD4) = C8xC3:D4 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.77(C4xD4) | 192,668 |
C6.78(C4xD4) = C24:33D4 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.78(C4xD4) | 192,670 |
C6.79(C4xD4) = C24:D4 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.79(C4xD4) | 192,686 |
C6.80(C4xD4) = C24:21D4 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.80(C4xD4) | 192,687 |
C6.81(C4xD4) = C24.100D4 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | 4 | C6.81(C4xD4) | 192,703 |
C6.82(C4xD4) = C24.54D4 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | 4 | C6.82(C4xD4) | 192,704 |
C6.83(C4xD4) = C4xC6.D4 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.83(C4xD4) | 192,768 |
C6.84(C4xD4) = C24.73D6 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.84(C4xD4) | 192,769 |
C6.85(C4xD4) = C24.76D6 | φ: C4xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.85(C4xD4) | 192,772 |
C6.86(C4xD4) = C24.58D6 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.86(C4xD4) | 192,509 |
C6.87(C4xD4) = C24.19D6 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.87(C4xD4) | 192,510 |
C6.88(C4xD4) = C4:C4:5Dic3 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.88(C4xD4) | 192,539 |
C6.89(C4xD4) = C4:C4:6Dic3 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.89(C4xD4) | 192,543 |
C6.90(C4xD4) = D4xC3:C8 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.90(C4xD4) | 192,569 |
C6.91(C4xD4) = C42.47D6 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.91(C4xD4) | 192,570 |
C6.92(C4xD4) = C12:3M4(2) | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.92(C4xD4) | 192,571 |
C6.93(C4xD4) = Dic3xD8 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.93(C4xD4) | 192,708 |
C6.94(C4xD4) = D8:Dic3 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.94(C4xD4) | 192,711 |
C6.95(C4xD4) = Dic3xSD16 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.95(C4xD4) | 192,720 |
C6.96(C4xD4) = SD16:Dic3 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.96(C4xD4) | 192,723 |
C6.97(C4xD4) = Dic3xQ16 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.97(C4xD4) | 192,740 |
C6.98(C4xD4) = Q16:Dic3 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.98(C4xD4) | 192,743 |
C6.99(C4xD4) = D8:5Dic3 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 4 | C6.99(C4xD4) | 192,755 |
C6.100(C4xD4) = D8:4Dic3 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 4 | C6.100(C4xD4) | 192,756 |
C6.101(C4xD4) = C24.29D6 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.101(C4xD4) | 192,779 |
C6.102(C4xD4) = C24.30D6 | φ: C4xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.102(C4xD4) | 192,780 |
C6.103(C4xD4) = C12xC22:C4 | central extension (φ=1) | 96 | | C6.103(C4xD4) | 192,810 |
C6.104(C4xD4) = C12xC4:C4 | central extension (φ=1) | 192 | | C6.104(C4xD4) | 192,811 |
C6.105(C4xD4) = C3xC23.8Q8 | central extension (φ=1) | 96 | | C6.105(C4xD4) | 192,818 |
C6.106(C4xD4) = C3xC23.23D4 | central extension (φ=1) | 96 | | C6.106(C4xD4) | 192,819 |
C6.107(C4xD4) = C3xC23.63C23 | central extension (φ=1) | 192 | | C6.107(C4xD4) | 192,820 |
C6.108(C4xD4) = C3xC24.C22 | central extension (φ=1) | 96 | | C6.108(C4xD4) | 192,821 |
C6.109(C4xD4) = C3xC23.65C23 | central extension (φ=1) | 192 | | C6.109(C4xD4) | 192,822 |
C6.110(C4xD4) = C3xC24.3C22 | central extension (φ=1) | 96 | | C6.110(C4xD4) | 192,823 |
C6.111(C4xD4) = D4xC24 | central extension (φ=1) | 96 | | C6.111(C4xD4) | 192,867 |
C6.112(C4xD4) = C3xC8:9D4 | central extension (φ=1) | 96 | | C6.112(C4xD4) | 192,868 |
C6.113(C4xD4) = C3xC8:6D4 | central extension (φ=1) | 96 | | C6.113(C4xD4) | 192,869 |
C6.114(C4xD4) = C12xD8 | central extension (φ=1) | 96 | | C6.114(C4xD4) | 192,870 |
C6.115(C4xD4) = C12xSD16 | central extension (φ=1) | 96 | | C6.115(C4xD4) | 192,871 |
C6.116(C4xD4) = C12xQ16 | central extension (φ=1) | 192 | | C6.116(C4xD4) | 192,872 |
C6.117(C4xD4) = C3xSD16:C4 | central extension (φ=1) | 96 | | C6.117(C4xD4) | 192,873 |
C6.118(C4xD4) = C3xQ16:C4 | central extension (φ=1) | 192 | | C6.118(C4xD4) | 192,874 |
C6.119(C4xD4) = C3xD8:C4 | central extension (φ=1) | 96 | | C6.119(C4xD4) | 192,875 |
C6.120(C4xD4) = C3xC8oD8 | central extension (φ=1) | 48 | 2 | C6.120(C4xD4) | 192,876 |
C6.121(C4xD4) = C3xC8.26D4 | central extension (φ=1) | 48 | 4 | C6.121(C4xD4) | 192,877 |