Copied to
clipboard

G = Dic6:10D4order 192 = 26·3

3rd semidirect product of Dic6 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic6:10D4, C42.142D6, C6.912- 1+4, C4.71(S3xD4), (C4xD12):44C2, C3:5(Q8:5D4), C12.64(C2xD4), D6:15(C4oD4), Dic3:D4:41C2, D6:3D4:34C2, D6:3Q8:29C2, (C4xDic6):45C2, (C2xD4).174D6, C4.4D4:11S3, (C2xQ8).161D6, C22:C4.73D6, C6.91(C22xD4), (C2xC12).81C23, (C2xC6).221C24, C2.52(Q8oD12), Dic3.28(C2xD4), Dic3:4D4:30C2, (C4xC12).186C22, D6:C4.135C22, (C6xD4).156C22, (C22xC6).51C23, C23.53(C22xS3), (C6xQ8).127C22, Dic3.D4:41C2, C23.11D6:40C2, (C2xD12).223C22, C4:Dic3.377C22, C22.242(S3xC23), Dic3:C4.121C22, (C22xS3).216C23, (C2xDic3).253C23, (C4xDic3).214C22, (C2xDic6).297C22, C6.D4.55C22, (C22xDic3).143C22, (C2xS3xQ8):11C2, C2.64(C2xS3xD4), C2.77(S3xC4oD4), C6.188(C2xC4oD4), (C2xD4:2S3):19C2, (C3xC4.4D4):13C2, (S3xC2xC4).121C22, (C2xC4).196(C22xS3), (C2xC3:D4).60C22, (C3xC22:C4).65C22, SmallGroup(192,1236)

Series: Derived Chief Lower central Upper central

C1C2xC6 — Dic6:10D4
C1C3C6C2xC6C22xS3S3xC2xC4C2xS3xQ8 — Dic6:10D4
C3C2xC6 — Dic6:10D4
C1C22C4.4D4

Generators and relations for Dic6:10D4
 G = < a,b,c,d | a12=c4=d2=1, b2=a6, bab-1=a-1, ac=ca, dad=a5, cbc-1=dbd=a6b, dcd=c-1 >

Subgroups: 736 in 290 conjugacy classes, 105 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C4:C4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, Dic6, Dic6, C4xS3, D12, C2xDic3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xC6, C4xD4, C4xQ8, C4:D4, C22:Q8, C4.4D4, C4.4D4, C22xQ8, C2xC4oD4, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, D6:C4, C6.D4, C4xC12, C3xC22:C4, C2xDic6, C2xDic6, S3xC2xC4, S3xC2xC4, C2xD12, D4:2S3, S3xQ8, C22xDic3, C2xC3:D4, C6xD4, C6xQ8, Q8:5D4, C4xDic6, C4xD12, Dic3.D4, Dic3:4D4, Dic3:D4, C23.11D6, D6:3D4, D6:3Q8, C3xC4.4D4, C2xD4:2S3, C2xS3xQ8, Dic6:10D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C24, C22xS3, C22xD4, C2xC4oD4, 2- 1+4, S3xD4, S3xC23, Q8:5D4, C2xS3xD4, S3xC4oD4, Q8oD12, Dic6:10D4

Smallest permutation representation of Dic6:10D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 65 7 71)(2 64 8 70)(3 63 9 69)(4 62 10 68)(5 61 11 67)(6 72 12 66)(13 28 19 34)(14 27 20 33)(15 26 21 32)(16 25 22 31)(17 36 23 30)(18 35 24 29)(37 86 43 92)(38 85 44 91)(39 96 45 90)(40 95 46 89)(41 94 47 88)(42 93 48 87)(49 83 55 77)(50 82 56 76)(51 81 57 75)(52 80 58 74)(53 79 59 73)(54 78 60 84)
(1 92 77 26)(2 93 78 27)(3 94 79 28)(4 95 80 29)(5 96 81 30)(6 85 82 31)(7 86 83 32)(8 87 84 33)(9 88 73 34)(10 89 74 35)(11 90 75 36)(12 91 76 25)(13 63 41 59)(14 64 42 60)(15 65 43 49)(16 66 44 50)(17 67 45 51)(18 68 46 52)(19 69 47 53)(20 70 48 54)(21 71 37 55)(22 72 38 56)(23 61 39 57)(24 62 40 58)
(1 77)(2 82)(3 75)(4 80)(5 73)(6 78)(7 83)(8 76)(9 81)(10 74)(11 79)(12 84)(13 23)(14 16)(15 21)(17 19)(18 24)(20 22)(25 33)(27 31)(28 36)(30 34)(37 43)(38 48)(39 41)(40 46)(42 44)(45 47)(49 71)(50 64)(51 69)(52 62)(53 67)(54 72)(55 65)(56 70)(57 63)(58 68)(59 61)(60 66)(85 93)(87 91)(88 96)(90 94)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,65,7,71)(2,64,8,70)(3,63,9,69)(4,62,10,68)(5,61,11,67)(6,72,12,66)(13,28,19,34)(14,27,20,33)(15,26,21,32)(16,25,22,31)(17,36,23,30)(18,35,24,29)(37,86,43,92)(38,85,44,91)(39,96,45,90)(40,95,46,89)(41,94,47,88)(42,93,48,87)(49,83,55,77)(50,82,56,76)(51,81,57,75)(52,80,58,74)(53,79,59,73)(54,78,60,84), (1,92,77,26)(2,93,78,27)(3,94,79,28)(4,95,80,29)(5,96,81,30)(6,85,82,31)(7,86,83,32)(8,87,84,33)(9,88,73,34)(10,89,74,35)(11,90,75,36)(12,91,76,25)(13,63,41,59)(14,64,42,60)(15,65,43,49)(16,66,44,50)(17,67,45,51)(18,68,46,52)(19,69,47,53)(20,70,48,54)(21,71,37,55)(22,72,38,56)(23,61,39,57)(24,62,40,58), (1,77)(2,82)(3,75)(4,80)(5,73)(6,78)(7,83)(8,76)(9,81)(10,74)(11,79)(12,84)(13,23)(14,16)(15,21)(17,19)(18,24)(20,22)(25,33)(27,31)(28,36)(30,34)(37,43)(38,48)(39,41)(40,46)(42,44)(45,47)(49,71)(50,64)(51,69)(52,62)(53,67)(54,72)(55,65)(56,70)(57,63)(58,68)(59,61)(60,66)(85,93)(87,91)(88,96)(90,94)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,65,7,71)(2,64,8,70)(3,63,9,69)(4,62,10,68)(5,61,11,67)(6,72,12,66)(13,28,19,34)(14,27,20,33)(15,26,21,32)(16,25,22,31)(17,36,23,30)(18,35,24,29)(37,86,43,92)(38,85,44,91)(39,96,45,90)(40,95,46,89)(41,94,47,88)(42,93,48,87)(49,83,55,77)(50,82,56,76)(51,81,57,75)(52,80,58,74)(53,79,59,73)(54,78,60,84), (1,92,77,26)(2,93,78,27)(3,94,79,28)(4,95,80,29)(5,96,81,30)(6,85,82,31)(7,86,83,32)(8,87,84,33)(9,88,73,34)(10,89,74,35)(11,90,75,36)(12,91,76,25)(13,63,41,59)(14,64,42,60)(15,65,43,49)(16,66,44,50)(17,67,45,51)(18,68,46,52)(19,69,47,53)(20,70,48,54)(21,71,37,55)(22,72,38,56)(23,61,39,57)(24,62,40,58), (1,77)(2,82)(3,75)(4,80)(5,73)(6,78)(7,83)(8,76)(9,81)(10,74)(11,79)(12,84)(13,23)(14,16)(15,21)(17,19)(18,24)(20,22)(25,33)(27,31)(28,36)(30,34)(37,43)(38,48)(39,41)(40,46)(42,44)(45,47)(49,71)(50,64)(51,69)(52,62)(53,67)(54,72)(55,65)(56,70)(57,63)(58,68)(59,61)(60,66)(85,93)(87,91)(88,96)(90,94) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,65,7,71),(2,64,8,70),(3,63,9,69),(4,62,10,68),(5,61,11,67),(6,72,12,66),(13,28,19,34),(14,27,20,33),(15,26,21,32),(16,25,22,31),(17,36,23,30),(18,35,24,29),(37,86,43,92),(38,85,44,91),(39,96,45,90),(40,95,46,89),(41,94,47,88),(42,93,48,87),(49,83,55,77),(50,82,56,76),(51,81,57,75),(52,80,58,74),(53,79,59,73),(54,78,60,84)], [(1,92,77,26),(2,93,78,27),(3,94,79,28),(4,95,80,29),(5,96,81,30),(6,85,82,31),(7,86,83,32),(8,87,84,33),(9,88,73,34),(10,89,74,35),(11,90,75,36),(12,91,76,25),(13,63,41,59),(14,64,42,60),(15,65,43,49),(16,66,44,50),(17,67,45,51),(18,68,46,52),(19,69,47,53),(20,70,48,54),(21,71,37,55),(22,72,38,56),(23,61,39,57),(24,62,40,58)], [(1,77),(2,82),(3,75),(4,80),(5,73),(6,78),(7,83),(8,76),(9,81),(10,74),(11,79),(12,84),(13,23),(14,16),(15,21),(17,19),(18,24),(20,22),(25,33),(27,31),(28,36),(30,34),(37,43),(38,48),(39,41),(40,46),(42,44),(45,47),(49,71),(50,64),(51,69),(52,62),(53,67),(54,72),(55,65),(56,70),(57,63),(58,68),(59,61),(60,66),(85,93),(87,91),(88,96),(90,94)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E4F4G4H···4M4N4O4P6A6B6C6D6E12A···12F12G12H
order122222222344444444···44446666612···121212
size1111446612222224446···6121212222884···488

39 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4oD42- 1+4S3xD4S3xC4oD4Q8oD12
kernelDic6:10D4C4xDic6C4xD12Dic3.D4Dic3:4D4Dic3:D4C23.11D6D6:3D4D6:3Q8C3xC4.4D4C2xD4:2S3C2xS3xQ8C4.4D4Dic6C42C22:C4C2xD4C2xQ8D6C6C4C2C2
# reps11122221111114141141222

Matrix representation of Dic6:10D4 in GL6(F13)

800000
050000
000100
00121200
000010
000001
,
010000
1200000
0012000
001100
000010
000001
,
100000
0120000
0012000
0001200
000012
00001212
,
100000
0120000
001000
00121200
0000120
000011

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,12,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,2,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,0,1] >;

Dic6:10D4 in GAP, Magma, Sage, TeX

{\rm Dic}_6\rtimes_{10}D_4
% in TeX

G:=Group("Dic6:10D4");
// GroupNames label

G:=SmallGroup(192,1236);
// by ID

G=gap.SmallGroup(192,1236);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,100,1571,297,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^4=d^2=1,b^2=a^6,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^5,c*b*c^-1=d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<