extension | φ:Q→Aut N | d | ρ | Label | ID |
(C6xC12).1C6 = C62.19D6 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 144 | | (C6xC12).1C6 | 432,139 |
(C6xC12).2C6 = C22:C4x3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 72 | | (C6xC12).2C6 | 432,205 |
(C6xC12).3C6 = C4:C4xHe3 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 144 | | (C6xC12).3C6 | 432,207 |
(C6xC12).4C6 = C4:C4x3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 144 | | (C6xC12).4C6 | 432,208 |
(C6xC12).5C6 = C62.20D6 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 144 | | (C6xC12).5C6 | 432,140 |
(C6xC12).6C6 = C2xHe3:3Q8 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 144 | | (C6xC12).6C6 | 432,348 |
(C6xC12).7C6 = He3:7M4(2) | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 72 | 6 | (C6xC12).7C6 | 432,137 |
(C6xC12).8C6 = C2xHe3:3C8 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 144 | | (C6xC12).8C6 | 432,136 |
(C6xC12).9C6 = C4xC32:C12 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 144 | | (C6xC12).9C6 | 432,138 |
(C6xC12).10C6 = M4(2)xHe3 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 72 | 6 | (C6xC12).10C6 | 432,213 |
(C6xC12).11C6 = M4(2)x3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 72 | 6 | (C6xC12).11C6 | 432,214 |
(C6xC12).12C6 = C2xD4x3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 72 | | (C6xC12).12C6 | 432,405 |
(C6xC12).13C6 = C2xQ8xHe3 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 144 | | (C6xC12).13C6 | 432,407 |
(C6xC12).14C6 = C2xQ8x3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 144 | | (C6xC12).14C6 | 432,408 |
(C6xC12).15C6 = C4oD4x3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C6xC12 | 72 | 6 | (C6xC12).15C6 | 432,411 |
(C6xC12).16C6 = C42xHe3 | φ: C6/C2 → C3 ⊆ Aut C6xC12 | 144 | | (C6xC12).16C6 | 432,201 |
(C6xC12).17C6 = C42x3- 1+2 | φ: C6/C2 → C3 ⊆ Aut C6xC12 | 144 | | (C6xC12).17C6 | 432,202 |
(C6xC12).18C6 = C2xC8xHe3 | φ: C6/C2 → C3 ⊆ Aut C6xC12 | 144 | | (C6xC12).18C6 | 432,210 |
(C6xC12).19C6 = C2xC8x3- 1+2 | φ: C6/C2 → C3 ⊆ Aut C6xC12 | 144 | | (C6xC12).19C6 | 432,211 |
(C6xC12).20C6 = C22xC4x3- 1+2 | φ: C6/C2 → C3 ⊆ Aut C6xC12 | 144 | | (C6xC12).20C6 | 432,402 |
(C6xC12).21C6 = C9xDic3:C4 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).21C6 | 432,132 |
(C6xC12).22C6 = C9xD6:C4 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).22C6 | 432,135 |
(C6xC12).23C6 = C22:C4xC3xC9 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 216 | | (C6xC12).23C6 | 432,203 |
(C6xC12).24C6 = C4:C4xC3xC9 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 432 | | (C6xC12).24C6 | 432,206 |
(C6xC12).25C6 = C32xDic3:C4 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).25C6 | 432,472 |
(C6xC12).26C6 = C3xC6.Dic6 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).26C6 | 432,488 |
(C6xC12).27C6 = C4:C4xC33 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 432 | | (C6xC12).27C6 | 432,514 |
(C6xC12).28C6 = C3xC12:Dic3 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).28C6 | 432,489 |
(C6xC12).29C6 = C6xC32:4Q8 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).29C6 | 432,710 |
(C6xC12).30C6 = C3xC12.58D6 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 72 | | (C6xC12).30C6 | 432,486 |
(C6xC12).31C6 = C9xC4.Dic3 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 72 | 2 | (C6xC12).31C6 | 432,127 |
(C6xC12).32C6 = C9xC4oD12 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 72 | 2 | (C6xC12).32C6 | 432,347 |
(C6xC12).33C6 = C32xC4.Dic3 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 72 | | (C6xC12).33C6 | 432,470 |
(C6xC12).34C6 = C9xC4:Dic3 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).34C6 | 432,133 |
(C6xC12).35C6 = C18xDic6 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).35C6 | 432,341 |
(C6xC12).36C6 = C18xD12 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).36C6 | 432,346 |
(C6xC12).37C6 = C32xC4:Dic3 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).37C6 | 432,473 |
(C6xC12).38C6 = C3xC6xDic6 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).38C6 | 432,700 |
(C6xC12).39C6 = C18xC3:C8 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).39C6 | 432,126 |
(C6xC12).40C6 = Dic3xC36 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).40C6 | 432,131 |
(C6xC12).41C6 = S3xC2xC36 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).41C6 | 432,345 |
(C6xC12).42C6 = C3xC6xC3:C8 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).42C6 | 432,469 |
(C6xC12).43C6 = Dic3xC3xC12 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).43C6 | 432,471 |
(C6xC12).44C6 = C6xC32:4C8 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).44C6 | 432,485 |
(C6xC12).45C6 = C12xC3:Dic3 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).45C6 | 432,487 |
(C6xC12).46C6 = M4(2)xC3xC9 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 216 | | (C6xC12).46C6 | 432,212 |
(C6xC12).47C6 = D4xC3xC18 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 216 | | (C6xC12).47C6 | 432,403 |
(C6xC12).48C6 = Q8xC3xC18 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 432 | | (C6xC12).48C6 | 432,406 |
(C6xC12).49C6 = C4oD4xC3xC9 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 216 | | (C6xC12).49C6 | 432,409 |
(C6xC12).50C6 = M4(2)xC33 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 216 | | (C6xC12).50C6 | 432,516 |
(C6xC12).51C6 = Q8xC32xC6 | φ: C6/C3 → C2 ⊆ Aut C6xC12 | 432 | | (C6xC12).51C6 | 432,732 |