Computations of the Riemann zeta function

These pages sorted by the size of $t$

These pages sorted by the size of $Z(t)$

These pages sorted by the size of $S(t)$

Here are some pictures of and information about $Z(t)$ and $S(t)$ for some large values of $t$. The $Z$ function is the zeta function on the critical line, rotated so that it is real, so \[ Z(t) = e^{i Arg(\zeta(1/2 + it)} \zeta(1/2 + it) \] $S(t)$ is the argument of $\zeta(1/2 + it)$, properly interpreted. In some way, it measures irregularity in the distribution of the zeros of the zeta function.

These are from computations run by Ghaith Hiary and myself, based on the algorithm described in Ghaith's paper (also available at the arXiv). These computations have been run on a variety of machines. Initially, we used machines on the Sage cluster at the University of Washington (thanks to William Stein and the NSF), then later the riemann cluster at University of Waterloo (thanks to Mike Rubinstein). Currently, computations are being run at the University of Bristol on the LMFDB machines (funded by EPSRC) and on BlueCrystal.

If your web browser window is big enough, in the top right of each section below you will see a plot of Z(t), in the bottom left you will see S(t), and in the bottom right you will see a zoomed in plot of Z(t). Things are sized roughly so that this looks good on my 1080p monitor.

The images are all links that will take you to a zoomable version of the plot.

You can click on any image for a bigger version. Also, you can look at a list of all of the images: Z(t) or S(t).

See also:

Page 0  Page 1  Page 2  Page 3  Page 4  Page 5  Page 6  Page 7  Page 8  Page 9  Page 10  Page 11  Page 12  Page 13  Page 14  Page 15  Page 16  Page 17  Page 18  Page 19  Page 20  Page 21  Page 22

$\zeta(1/2 + it)$ around $t = 10000000000000000000000000440 \approx 1.0 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:-36.36142249

Value of $t$ for which the maximum occurs:10000000000000000000000000448.596152344

Value of $\zeta(1/2 + it)$:$16.87802945 - 32.2069118i$

Maximum of $S(t)$ in this range:-1.88397586

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 100000000000000000000000000 \approx 1.0 \times 10^{ 26 }$

Largest value of $Z(t)$ in this graph:-82.69874656

Value of $t$ for which the maximum occurs:100000000000000000000000021.84416016

Value of $\zeta(1/2 + it)$:$63.35279613 - 53.155488i$

Maximum of $S(t)$ in this range:-1.881152582

zeta function picture

zeta function picture zeta function picture

Video of partial sums


$\zeta(1/2 + it)$ around $t = 100000000000000000000000000 \approx 1.0 \times 10^{ 26 }$

Largest value of $Z(t)$ in this graph:-82.69877147

Value of $t$ for which the maximum occurs:100000000000000000000000021.84416016

Value of $\zeta(1/2 + it)$:$63.35281522 - 53.15550402i$

Maximum of $S(t)$ in this range:-1.881144126

zeta function picture

zeta function picture zeta function picture

Video of partial sums


$\zeta(1/2 + it)$ around $t = 1194479330178301585147851 \approx 1.19447933018 \times 10^{ 24 }$

Largest value of $Z(t)$ in this graph:-61.84145705

Value of $t$ for which the maximum occurs:1194479330178301585147883.15699609

Value of $\zeta(1/2 + it)$:$55.48308711 - 27.31286976i$

Maximum of $S(t)$ in this range:1.880096268

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 16000000000000000000000000080 \approx 1.6 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:91.55816467

Value of $t$ for which the maximum occurs:16000000000000000000000000090.19130078

Value of $\zeta(1/2 + it)$:$59.07766963 + 69.94802692i$

Maximum of $S(t)$ in this range:1.876948858

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1057983951339984806752281456 \approx 1.05798395134 \times 10^{ 27 }$

Largest value of $Z(t)$ in this graph:-44.14298854

Value of $t$ for which the maximum occurs:1057983951339984806752281491.12999609

Value of $\zeta(1/2 + it)$:$40.58103524 - 17.37190308i$

Maximum of $S(t)$ in this range:1.865800682

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 10000000000000000000000000800 \approx 1.0 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:128.6447034

Value of $t$ for which the maximum occurs:10000000000000000000000000837.72599609

Value of $\zeta(1/2 + it)$:$30.94500508 - 124.8673952i$

Maximum of $S(t)$ in this range:-1.862715466

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1500000000000000000000000002000 \approx 1.5 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:249.404057

Value of $t$ for which the maximum occurs:1500000000000000000000000002007.088996094

Value of $\zeta(1/2 + it)$:$147.878016 + 200.8344493i$

Maximum of $S(t)$ in this range:1.858733602

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 150000000000000000000000000000 \approx 1.5 \times 10^{ 29 }$

Largest value of $Z(t)$ in this graph:112.2148424

Value of $t$ for which the maximum occurs:150000000000000000000000000001.737996094

Value of $\zeta(1/2 + it)$:$19.54040032 - 110.5004236i$

Maximum of $S(t)$ in this range:-1.855361979

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 10000000000000000000000000400 \approx 1.0 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:-78.06001337

Value of $t$ for which the maximum occurs:10000000000000000000000000429.68745703

Value of $\zeta(1/2 + it)$:$69.91543921 + 34.71594802i$

Maximum of $S(t)$ in this range:-1.853529154

zeta function picture

zeta function picture zeta function picture