Computations of the Riemann zeta function

These pages sorted by the size of $t$

These pages sorted by the size of $Z(t)$

These pages sorted by the size of $S(t)$

Here are some pictures of and information about $Z(t)$ and $S(t)$ for some large values of $t$. The $Z$ function is the zeta function on the critical line, rotated so that it is real, so \[ Z(t) = e^{i Arg(\zeta(1/2 + it)} \zeta(1/2 + it) \] $S(t)$ is the argument of $\zeta(1/2 + it)$, properly interpreted. In some way, it measures irregularity in the distribution of the zeros of the zeta function.

These are from computations run by Ghaith Hiary and myself, based on the algorithm described in Ghaith's paper (also available at the arXiv). These computations have been run on a variety of machines. Initially, we used machines on the Sage cluster at the University of Washington (thanks to William Stein and the NSF), then later the riemann cluster at University of Waterloo (thanks to Mike Rubinstein). Currently, computations are being run at the University of Bristol on the LMFDB machines (funded by EPSRC) and on BlueCrystal.

If your web browser window is big enough, in the top right of each section below you will see a plot of Z(t), in the bottom left you will see S(t), and in the bottom right you will see a zoomed in plot of Z(t). Things are sized roughly so that this looks good on my 1080p monitor.

The images are all links that will take you to a zoomable version of the plot.

You can click on any image for a bigger version. Also, you can look at a list of all of the images: Z(t) or S(t).

See also:

Page 0  Page 1  Page 2  Page 3  Page 4  Page 5  Page 6  Page 7  Page 8  Page 9  Page 10  Page 11  Page 12  Page 13  Page 14  Page 15  Page 16  Page 17  Page 18  Page 19  Page 20  Page 21  Page 22

$\zeta(1/2 + it)$ around $t = 304957061419820580927699847346 \approx 3.0495706142 \times 10^{ 29 }$

Largest value of $Z(t)$ in this graph:-4488.222485

Value of $t$ for which the maximum occurs:304957061419820580927699847365.99099609

Value of $\zeta(1/2 + it)$:$1577.834557 + 4201.735259i$

Maximum of $S(t)$ in this range:-2.711519752

zeta function picture

zeta function picture zeta function picture

Video of partial sums


$\zeta(1/2 + it)$ around $t = 10121598453421191913984785 \approx 1.01215984534 \times 10^{ 25 }$

Largest value of $Z(t)$ in this graph:-4474.450571

Value of $t$ for which the maximum occurs:10121598453421191913984805.62917578

Value of $\zeta(1/2 + it)$:$4361.062124 - 1000.922108i$

Maximum of $S(t)$ in this range:-2.749068424

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 5866392475614912729251488020197 \approx 5.86639247561 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:-4423.29945

Value of $t$ for which the maximum occurs:5866392475614912729251488020217.85599609

Value of $\zeta(1/2 + it)$:$1510.595869 - 4157.364327i$

Maximum of $S(t)$ in this range:-2.713054828

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 70489037205504571213437297 \approx 7.04890372055 \times 10^{ 25 }$

Largest value of $Z(t)$ in this graph:-4408.784258

Value of $t$ for which the maximum occurs:70489037205504571213437317.59248047

Value of $\zeta(1/2 + it)$:$4390.867934 + 397.0609783i$

Maximum of $S(t)$ in this range:-2.668383912

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 299329894577457912595173700867 \approx 2.99329894577 \times 10^{ 29 }$

Largest value of $Z(t)$ in this graph:4366.988583

Value of $t$ for which the maximum occurs:299329894577457912595173700887.35019141

Value of $\zeta(1/2 + it)$:$2901.063845 - 3264.110575i$

Maximum of $S(t)$ in this range:-2.759057131

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 3118860705463931156579181296 \approx 3.11886070546 \times 10^{ 27 }$

Largest value of $Z(t)$ in this graph:-4358.472865

Value of $t$ for which the maximum occurs:3118860705463931156579181316.83699609

Value of $\zeta(1/2 + it)$:$2722.708067 + 3403.402194i$

Maximum of $S(t)$ in this range:-2.792323862

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 39042432452317384450794590094 \approx 3.90424324523 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:-4309.297765

Value of $t$ for which the maximum occurs:39042432452317384450794590114.70899609

Value of $\zeta(1/2 + it)$:$4009.158918 - 1580.092403i$

Maximum of $S(t)$ in this range:-2.612394546

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 11229291116427626887289363 \approx 1.12292911164 \times 10^{ 25 }$

Largest value of $Z(t)$ in this graph:3990.095783

Value of $t$ for which the maximum occurs:11229291116427626887289383.83699609

Value of $\zeta(1/2 + it)$:$3314.339402 - 2221.715258i$

Maximum of $S(t)$ in this range:2.767821034

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 222795271975141839186726115317 \approx 2.22795271975 \times 10^{ 29 }$

Largest value of $Z(t)$ in this graph:3958.409438

Value of $t$ for which the maximum occurs:222795271975141839186726115337.27532422

Value of $\zeta(1/2 + it)$:$2023.064201 - 3402.383946i$

Maximum of $S(t)$ in this range:2.84961886

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 290932446696986343750382659969 \approx 2.90932446697 \times 10^{ 29 }$

Largest value of $Z(t)$ in this graph:-3881.144296

Value of $t$ for which the maximum occurs:290932446696986343750382659989.46499609

Value of $\zeta(1/2 + it)$:$3240.657427 + 2135.748227i$

Maximum of $S(t)$ in this range:-3.066589379

zeta function picture

zeta function picture zeta function picture