Computations of the Riemann zeta function

These pages sorted by the size of $t$

These pages sorted by the size of $Z(t)$

These pages sorted by the size of $S(t)$

Here are some pictures of and information about $Z(t)$ and $S(t)$ for some large values of $t$. The $Z$ function is the zeta function on the critical line, rotated so that it is real, so \[ Z(t) = e^{i Arg(\zeta(1/2 + it)} \zeta(1/2 + it) \] $S(t)$ is the argument of $\zeta(1/2 + it)$, properly interpreted. In some way, it measures irregularity in the distribution of the zeros of the zeta function.

These are from computations run by Ghaith Hiary and myself, based on the algorithm described in Ghaith's paper (also available at the arXiv). These computations have been run on a variety of machines. Initially, we used machines on the Sage cluster at the University of Washington (thanks to William Stein and the NSF), then later the riemann cluster at University of Waterloo (thanks to Mike Rubinstein). Currently, computations are being run at the University of Bristol on the LMFDB machines (funded by EPSRC) and on BlueCrystal.

If your web browser window is big enough, in the top right of each section below you will see a plot of Z(t), in the bottom left you will see S(t), and in the bottom right you will see a zoomed in plot of Z(t). Things are sized roughly so that this looks good on my 1080p monitor.

The images are all links that will take you to a zoomable version of the plot.

You can click on any image for a bigger version. Also, you can look at a list of all of the images: Z(t) or S(t).

See also:

Page 0  Page 1  Page 2  Page 3  Page 4  Page 5  Page 6  Page 7  Page 8  Page 9  Page 10  Page 11  Page 12  Page 13  Page 14  Page 15  Page 16  Page 17  Page 18  Page 19  Page 20  Page 21  Page 22

$\zeta(1/2 + it)$ around $t = 206058102488784342419984566108 \approx 2.06058102489 \times 10^{ 29 }$

Largest value of $Z(t)$ in this graph:6929.831204

Value of $t$ for which the maximum occurs:206058102488784342419984566128.35629297

Value of $\zeta(1/2 + it)$:$6929.814562 - 15.18763687i$

Maximum of $S(t)$ in this range:2.779283068

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 58755046149007347602141184542 \approx 5.8755046149 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:6909.736032

Value of $t$ for which the maximum occurs:58755046149007347602141184562.68842578

Value of $\zeta(1/2 + it)$:$2757.813339 - 6335.528204i$

Maximum of $S(t)$ in this range:-2.950849732

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 10758662450340950434456735165 \approx 1.07586624503 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:6846.918208

Value of $t$ for which the maximum occurs:10758662450340950434456735185.03201953

Value of $\zeta(1/2 + it)$:$5632.113795 - 3893.530936i$

Maximum of $S(t)$ in this range:-3.226196206

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 12970026600264011662238886156 \approx 1.29700266003 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:6742.996173

Value of $t$ for which the maximum occurs:12970026600264011662238886176.23321484

Value of $\zeta(1/2 + it)$:$6508.744351 - 1761.886595i$

Maximum of $S(t)$ in this range:-2.53496703

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 891210424622870710406880313 \approx 8.91210424623 \times 10^{ 26 }$

Largest value of $Z(t)$ in this graph:6661.200376

Value of $t$ for which the maximum occurs:891210424622870710406880333.87015234

Value of $\zeta(1/2 + it)$:$6248.227203 - 2308.949388i$

Maximum of $S(t)$ in this range:2.862778276

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 904686125701038780309820323494 \approx 9.04686125701 \times 10^{ 29 }$

Largest value of $Z(t)$ in this graph:6611.050888

Value of $t$ for which the maximum occurs:904686125701038780309820323514.66999609

Value of $\zeta(1/2 + it)$:$6501.069097 + 1200.872363i$

Maximum of $S(t)$ in this range:2.609590399

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 69283136738573030099505979364 \approx 6.92831367386 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:6594.411432

Value of $t$ for which the maximum occurs:69283136738573030099505979384.60300391

Value of $\zeta(1/2 + it)$:$6310.067016 + 1915.545975i$

Maximum of $S(t)$ in this range:2.590370895

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1822611993446349552686699337 \approx 1.82261199345 \times 10^{ 27 }$

Largest value of $Z(t)$ in this graph:-6538.083649

Value of $t$ for which the maximum occurs:1822611993446349552686699357.27743359

Value of $\zeta(1/2 + it)$:$5960.419601 - 2686.993856i$

Maximum of $S(t)$ in this range:-2.753606331

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 461193511079478673832281649547 \approx 4.61193511079 \times 10^{ 29 }$

Largest value of $Z(t)$ in this graph:-6497.043876

Value of $t$ for which the maximum occurs:461193511079478673832281649567.60522266

Value of $\zeta(1/2 + it)$:$3399.072327 + 5536.956424i$

Maximum of $S(t)$ in this range:2.813269141

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 182947305623024546647302946781 \approx 1.82947305623 \times 10^{ 29 }$

Largest value of $Z(t)$ in this graph:-6361.82605

Value of $t$ for which the maximum occurs:182947305623024546647302946801.20419141

Value of $\zeta(1/2 + it)$:$4768.65483 - 4211.028592i$

Maximum of $S(t)$ in this range:3.001007294

zeta function picture

zeta function picture zeta function picture