Computations of the Riemann zeta function

These pages sorted by the size of $t$

These pages sorted by the size of $Z(t)$

These pages sorted by the size of $S(t)$

Here are some pictures of and information about $Z(t)$ and $S(t)$ for some large values of $t$. The $Z$ function is the zeta function on the critical line, rotated so that it is real, so \[ Z(t) = e^{i Arg(\zeta(1/2 + it)} \zeta(1/2 + it) \] $S(t)$ is the argument of $\zeta(1/2 + it)$, properly interpreted. In some way, it measures irregularity in the distribution of the zeros of the zeta function.

These are from computations run by Ghaith Hiary and myself, based on the algorithm described in Ghaith's paper (also available at the arXiv). These computations have been run on a variety of machines. Initially, we used machines on the Sage cluster at the University of Washington (thanks to William Stein and the NSF), then later the riemann cluster at University of Waterloo (thanks to Mike Rubinstein). Currently, computations are being run at the University of Bristol on the LMFDB machines (funded by EPSRC) and on BlueCrystal.

If your web browser window is big enough, in the top right of each section below you will see a plot of Z(t), in the bottom left you will see S(t), and in the bottom right you will see a zoomed in plot of Z(t). Things are sized roughly so that this looks good on my 1080p monitor.

The images are all links that will take you to a zoomable version of the plot.

You can click on any image for a bigger version. Also, you can look at a list of all of the images: Z(t) or S(t).

See also:

Page 0  Page 1  Page 2  Page 3  Page 4  Page 5  Page 6  Page 7  Page 8  Page 9  Page 10  Page 11  Page 12  Page 13  Page 14  Page 15  Page 16  Page 17  Page 18  Page 19  Page 20  Page 21  Page 22

Page 17


$\zeta(1/2 + it)$ around $t = 10000000000000000000000000200 \approx 1.0 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:-79.43794806

Value of $t$ for which the maximum occurs:10000000000000000000000000230.06099609

Value of $\zeta(1/2 + it)$:$71.74138878 + 34.11100597i$

Maximum of $S(t)$ in this range:-1.960355901

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 10000000000000000000000000160 \approx 1.0 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:-45.25413641

Value of $t$ for which the maximum occurs:10000000000000000000000000184.93799609

Value of $\zeta(1/2 + it)$:$44.78273212 - 6.514888032i$

Maximum of $S(t)$ in this range:-1.599361083

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 10000000000000000000000000120 \approx 1.0 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:-480.5116167

Value of $t$ for which the maximum occurs:10000000000000000000000000139.82914453

Value of $\zeta(1/2 + it)$:$184.8801747 - 443.5208392i$

Maximum of $S(t)$ in this range:-1.890637995

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 10000000000000000000000000080 \approx 1.0 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:64.47512928

Value of $t$ for which the maximum occurs:10000000000000000000000000085.331996094

Value of $\zeta(1/2 + it)$:$60.34910751 - 22.69421773i$

Maximum of $S(t)$ in this range:1.910704816

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 10000000000000000000000000040 \approx 1.0 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:-36.74902166

Value of $t$ for which the maximum occurs:10000000000000000000000000059.37920703

Value of $\zeta(1/2 + it)$:$11.16384707 - 35.01227087i$

Maximum of $S(t)$ in this range:-1.839476323

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 9999999999999999999999999980 \approx 1.0 \times 10^{ 28 }$

Largest value of $Z(t)$ in this graph:-45.62660934

Value of $t$ for which the maximum occurs:9999999999999999999999999985.290347656

Value of $\zeta(1/2 + it)$:$39.99671851 + 21.95563683i$

Maximum of $S(t)$ in this range:-1.884375111

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 9403885503382820410724025970 \approx 9.40388550338 \times 10^{ 27 }$

Largest value of $Z(t)$ in this graph:4506.746989

Value of $t$ for which the maximum occurs:9403885503382820410724025990.05099609

Value of $\zeta(1/2 + it)$:$2961.923402 + 3396.730513i$

Maximum of $S(t)$ in this range:2.795603318

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 8513462154860685687407505849 \approx 8.51346215486 \times 10^{ 27 }$

Largest value of $Z(t)$ in this graph:5342.78595

Value of $t$ for which the maximum occurs:8513462154860685687407505869.04012891

Value of $\zeta(1/2 + it)$:$4392.484169 - 3041.618735i$

Maximum of $S(t)$ in this range:2.617895445

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 8003262835021551218601182764 \approx 8.00326283502 \times 10^{ 27 }$

Largest value of $Z(t)$ in this graph:7544.091014

Value of $t$ for which the maximum occurs:8003262835021551218601182784.15308203

Value of $\zeta(1/2 + it)$:$7539.257335 + 270.0149201i$

Maximum of $S(t)$ in this range:-2.942957174

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 7757304990367861417150213034 \approx 7.75730499037 \times 10^{ 27 }$

Largest value of $Z(t)$ in this graph:-4629.47999

Value of $t$ for which the maximum occurs:7757304990367861417150213054.05932422

Value of $\zeta(1/2 + it)$:$3989.521504 + 2348.574707i$

Maximum of $S(t)$ in this range:3.345544387

zeta function picture

zeta function picture zeta function picture