Computations of the Riemann zeta function

These pages sorted by the size of $t$

These pages sorted by the size of $Z(t)$

These pages sorted by the size of $S(t)$

Here are some pictures of and information about $Z(t)$ and $S(t)$ for some large values of $t$. The $Z$ function is the zeta function on the critical line, rotated so that it is real, so \[ Z(t) = e^{i Arg(\zeta(1/2 + it)} \zeta(1/2 + it) \] $S(t)$ is the argument of $\zeta(1/2 + it)$, properly interpreted. In some way, it measures irregularity in the distribution of the zeros of the zeta function.

These are from computations run by Ghaith Hiary and myself, based on the algorithm described in Ghaith's paper (also available at the arXiv). These computations have been run on a variety of machines. Initially, we used machines on the Sage cluster at the University of Washington (thanks to William Stein and the NSF), then later the riemann cluster at University of Waterloo (thanks to Mike Rubinstein). Currently, computations are being run at the University of Bristol on the LMFDB machines (funded by EPSRC) and on BlueCrystal.

If your web browser window is big enough, in the top right of each section below you will see a plot of Z(t), in the bottom left you will see S(t), and in the bottom right you will see a zoomed in plot of Z(t). Things are sized roughly so that this looks good on my 1080p monitor.

The images are all links that will take you to a zoomable version of the plot.

You can click on any image for a bigger version. Also, you can look at a list of all of the images: Z(t) or S(t).

See also:

Page 0  Page 1  Page 2  Page 3  Page 4  Page 5  Page 6  Page 7  Page 8  Page 9  Page 10  Page 11  Page 12  Page 13  Page 14  Page 15  Page 16  Page 17  Page 18  Page 19  Page 20  Page 21  Page 22

Page 3


$\zeta(1/2 + it)$ around $t = 1907915287180786223131860607177 \approx 1.90791528718 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:10251.5994

Value of $t$ for which the maximum occurs:1907915287180786223131860607197.54635547

Value of $\zeta(1/2 + it)$:$10042.31913 + 2060.8534i$

Maximum of $S(t)$ in this range:2.616803341

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1815914128987815940610890018924 \approx 1.81591412899 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:2449.122035

Value of $t$ for which the maximum occurs:1815914128987815940610890018926.203261719

Value of $\zeta(1/2 + it)$:$2449.113516 - 6.459476615i$

Maximum of $S(t)$ in this range:-2.574496557

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1500000000000000000000000011000 \approx 1.5 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:110.9150688

Value of $t$ for which the maximum occurs:1500000000000000000000000011037.00548828

Value of $\zeta(1/2 + it)$:$61.88489203 - 92.04570938i$

Maximum of $S(t)$ in this range:-1.698102341

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1500000000000000000000000010000 \approx 1.5 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:-89.53223914

Value of $t$ for which the maximum occurs:1500000000000000000000000010025.34599609

Value of $\zeta(1/2 + it)$:$58.41850624 + 67.84762321i$

Maximum of $S(t)$ in this range:-1.850515438

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1500000000000000000000000009000 \approx 1.5 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:-56.37121679

Value of $t$ for which the maximum occurs:1500000000000000000000000009005.470152344

Value of $\zeta(1/2 + it)$:$30.68764709 + 47.28617556i$

Maximum of $S(t)$ in this range:-2.095509276

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1500000000000000000000000008000 \approx 1.5 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:49.11443688

Value of $t$ for which the maximum occurs:1500000000000000000000000008017.85841797

Value of $\zeta(1/2 + it)$:$49.11291039 + 0.3872244136i$

Maximum of $S(t)$ in this range:2.201216992

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1500000000000000000000000007000 \approx 1.5 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:77.47630093

Value of $t$ for which the maximum occurs:1500000000000000000000000007011.75799609

Value of $\zeta(1/2 + it)$:$52.77802062 - 56.7191127i$

Maximum of $S(t)$ in this range:-1.818069505

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1500000000000000000000000006000 \approx 1.5 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:-93.45643877

Value of $t$ for which the maximum occurs:1500000000000000000000000006004.912996094

Value of $\zeta(1/2 + it)$:$2.712997012 + 93.41705195i$

Maximum of $S(t)$ in this range:1.815837758

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1500000000000000000000000005000 \approx 1.5 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:-56.48299812

Value of $t$ for which the maximum occurs:1500000000000000000000000005035.98626172

Value of $\zeta(1/2 + it)$:$56.43803979 + 2.25316255i$

Maximum of $S(t)$ in this range:1.914417045

zeta function picture

zeta function picture zeta function picture


$\zeta(1/2 + it)$ around $t = 1500000000000000000000000004000 \approx 1.5 \times 10^{ 30 }$

Largest value of $Z(t)$ in this graph:-40.05598487

Value of $t$ for which the maximum occurs:1500000000000000000000000004020.38743359

Value of $\zeta(1/2 + it)$:$40.03948266 + 1.149674975i$

Maximum of $S(t)$ in this range:-1.715186207

zeta function picture

zeta function picture zeta function picture