p-group, cyclic, elementary abelian, simple, monomial
Aliases: C13, also denoted Z13, SmallGroup(13,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C13 |
C1 — C13 |
C1 — C13 |
C1 — C13 |
Generators and relations for C13
G = < a | a13=1 >
Character table of C13
class | 1 | 13A | 13B | 13C | 13D | 13E | 13F | 13G | 13H | 13I | 13J | 13K | 13L | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ1312 | ζ132 | ζ133 | ζ134 | ζ135 | ζ136 | ζ137 | ζ138 | ζ139 | ζ1310 | ζ1311 | ζ13 | linear of order 13 faithful |
ρ3 | 1 | ζ1311 | ζ134 | ζ136 | ζ138 | ζ1310 | ζ1312 | ζ13 | ζ133 | ζ135 | ζ137 | ζ139 | ζ132 | linear of order 13 faithful |
ρ4 | 1 | ζ1310 | ζ136 | ζ139 | ζ1312 | ζ132 | ζ135 | ζ138 | ζ1311 | ζ13 | ζ134 | ζ137 | ζ133 | linear of order 13 faithful |
ρ5 | 1 | ζ139 | ζ138 | ζ1312 | ζ133 | ζ137 | ζ1311 | ζ132 | ζ136 | ζ1310 | ζ13 | ζ135 | ζ134 | linear of order 13 faithful |
ρ6 | 1 | ζ138 | ζ1310 | ζ132 | ζ137 | ζ1312 | ζ134 | ζ139 | ζ13 | ζ136 | ζ1311 | ζ133 | ζ135 | linear of order 13 faithful |
ρ7 | 1 | ζ137 | ζ1312 | ζ135 | ζ1311 | ζ134 | ζ1310 | ζ133 | ζ139 | ζ132 | ζ138 | ζ13 | ζ136 | linear of order 13 faithful |
ρ8 | 1 | ζ136 | ζ13 | ζ138 | ζ132 | ζ139 | ζ133 | ζ1310 | ζ134 | ζ1311 | ζ135 | ζ1312 | ζ137 | linear of order 13 faithful |
ρ9 | 1 | ζ135 | ζ133 | ζ1311 | ζ136 | ζ13 | ζ139 | ζ134 | ζ1312 | ζ137 | ζ132 | ζ1310 | ζ138 | linear of order 13 faithful |
ρ10 | 1 | ζ134 | ζ135 | ζ13 | ζ1310 | ζ136 | ζ132 | ζ1311 | ζ137 | ζ133 | ζ1312 | ζ138 | ζ139 | linear of order 13 faithful |
ρ11 | 1 | ζ133 | ζ137 | ζ134 | ζ13 | ζ1311 | ζ138 | ζ135 | ζ132 | ζ1312 | ζ139 | ζ136 | ζ1310 | linear of order 13 faithful |
ρ12 | 1 | ζ132 | ζ139 | ζ137 | ζ135 | ζ133 | ζ13 | ζ1312 | ζ1310 | ζ138 | ζ136 | ζ134 | ζ1311 | linear of order 13 faithful |
ρ13 | 1 | ζ13 | ζ1311 | ζ1310 | ζ139 | ζ138 | ζ137 | ζ136 | ζ135 | ζ134 | ζ133 | ζ132 | ζ1312 | linear of order 13 faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13)
G:=sub<Sym(13)| (1,2,3,4,5,6,7,8,9,10,11,12,13)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13)]])
G:=TransitiveGroup(13,1);
C13 is a maximal subgroup of
D13 C13⋊C3 C169 C33⋊C13
C13 is a maximal quotient of C169 C33⋊C13
action | f(x) | Disc(f) |
---|---|---|
13T1 | x13-x12-24x11+19x10+190x9-116x8-601x7+246x6+738x5-215x4-291x3+68x2+10x-1 | 234·5312·832·3172·7192 |
Matrix representation of C13 ►in GL1(𝔽53) generated by
13 |
G:=sub<GL(1,GF(53))| [13] >;
C13 in GAP, Magma, Sage, TeX
C_{13}
% in TeX
G:=Group("C13");
// GroupNames label
G:=SmallGroup(13,1);
// by ID
G=gap.SmallGroup(13,1);
# by ID
G:=PCGroup([1,-13]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^13=1>;
// generators/relations
Export
Subgroup lattice of C13 in TeX
Character table of C13 in TeX