metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary
Aliases: C13⋊C3, SmallGroup(39,1)
Series: Derived ►Chief ►Lower central ►Upper central
C13 — C13⋊C3 |
Generators and relations for C13⋊C3
G = < a,b | a13=b3=1, bab-1=a9 >
Character table of C13⋊C3
class | 1 | 3A | 3B | 13A | 13B | 13C | 13D | |
size | 1 | 13 | 13 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ3 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 3 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | complex faithful |
ρ5 | 3 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | complex faithful |
ρ6 | 3 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | complex faithful |
ρ7 | 3 | 0 | 0 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)
G:=sub<Sym(13)| (1,2,3,4,5,6,7,8,9,10,11,12,13), (2,4,10)(3,7,6)(5,13,11)(8,9,12)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13), (2,4,10)(3,7,6)(5,13,11)(8,9,12) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12)]])
G:=TransitiveGroup(13,3);
C13⋊C3 is a maximal subgroup of
C13⋊C6 C13⋊A4 C91⋊C3 C91⋊4C3
C13⋊C3 is a maximal quotient of C13⋊C9 C13⋊A4 C91⋊C3 C91⋊4C3
action | f(x) | Disc(f) |
---|---|---|
13T3 | x13-39x11+468x9-1989x7-507x6+2886x5+1443x4-624x3-234x2+3 | 218·312·1316·594412·3584832 |
Matrix representation of C13⋊C3 ►in GL3(𝔽3) generated by
0 | 2 | 0 |
2 | 1 | 2 |
2 | 0 | 1 |
1 | 1 | 2 |
0 | 2 | 1 |
0 | 2 | 0 |
G:=sub<GL(3,GF(3))| [0,2,2,2,1,0,0,2,1],[1,0,0,1,2,2,2,1,0] >;
C13⋊C3 in GAP, Magma, Sage, TeX
C_{13}\rtimes C_3
% in TeX
G:=Group("C13:C3");
// GroupNames label
G:=SmallGroup(39,1);
// by ID
G=gap.SmallGroup(39,1);
# by ID
G:=PCGroup([2,-3,-13,37]);
// Polycyclic
G:=Group<a,b|a^13=b^3=1,b*a*b^-1=a^9>;
// generators/relations
Export
Subgroup lattice of C13⋊C3 in TeX
Character table of C13⋊C3 in TeX