metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D13, C13⋊C2, sometimes denoted D26 or Dih13 or Dih26, SmallGroup(26,1)
Series: Derived ►Chief ►Lower central ►Upper central
C13 — D13 |
Generators and relations for D13
G = < a,b | a13=b2=1, bab=a-1 >
Character table of D13
class | 1 | 2 | 13A | 13B | 13C | 13D | 13E | 13F | |
size | 1 | 13 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ139+ζ134 | ζ137+ζ136 | ζ138+ζ135 | ζ1310+ζ133 | ζ1312+ζ13 | ζ1311+ζ132 | orthogonal faithful |
ρ4 | 2 | 0 | ζ1312+ζ13 | ζ138+ζ135 | ζ1311+ζ132 | ζ139+ζ134 | ζ1310+ζ133 | ζ137+ζ136 | orthogonal faithful |
ρ5 | 2 | 0 | ζ1310+ζ133 | ζ1311+ζ132 | ζ137+ζ136 | ζ1312+ζ13 | ζ139+ζ134 | ζ138+ζ135 | orthogonal faithful |
ρ6 | 2 | 0 | ζ137+ζ136 | ζ139+ζ134 | ζ1312+ζ13 | ζ1311+ζ132 | ζ138+ζ135 | ζ1310+ζ133 | orthogonal faithful |
ρ7 | 2 | 0 | ζ1311+ζ132 | ζ1310+ζ133 | ζ139+ζ134 | ζ138+ζ135 | ζ137+ζ136 | ζ1312+ζ13 | orthogonal faithful |
ρ8 | 2 | 0 | ζ138+ζ135 | ζ1312+ζ13 | ζ1310+ζ133 | ζ137+ζ136 | ζ1311+ζ132 | ζ139+ζ134 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)
G:=sub<Sym(13)| (1,2,3,4,5,6,7,8,9,10,11,12,13), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8)]])
G:=TransitiveGroup(13,2);
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(13 26)
G:=sub<Sym(26)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(13,26)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(13,26) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(13,26)]])
G:=TransitiveGroup(26,2);
D13 is a maximal subgroup of
C13⋊C4 C13⋊C6 C13⋊D13
D13p: D39 D65 D91 D143 D169 D221 D247 ...
D13 is a maximal quotient of
Dic13 C13⋊D13
D13p: D39 D65 D91 D143 D169 D221 D247 ...
action | f(x) | Disc(f) |
---|---|---|
13T2 | x13-x12-50x11-6x10+857x9+943x8-5045x7-9319x6+3890x5+13442x4+1835x3-2759x2+304x+4 | 264·412·532·712·1492·81016 |
Matrix representation of D13 ►in GL2(𝔽53) generated by
27 | 52 |
28 | 52 |
41 | 26 |
21 | 12 |
G:=sub<GL(2,GF(53))| [27,28,52,52],[41,21,26,12] >;
D13 in GAP, Magma, Sage, TeX
D_{13}
% in TeX
G:=Group("D13");
// GroupNames label
G:=SmallGroup(26,1);
// by ID
G=gap.SmallGroup(26,1);
# by ID
G:=PCGroup([2,-2,-13,97]);
// Polycyclic
G:=Group<a,b|a^13=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D13 in TeX
Character table of D13 in TeX