p-group, cyclic, elementary abelian, simple, monomial
Aliases: C17, also denoted Z17, SmallGroup(17,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C17 |
C1 — C17 |
C1 — C17 |
C1 — C17 |
Generators and relations for C17
G = < a | a17=1 >
Character table of C17
class | 1 | 17A | 17B | 17C | 17D | 17E | 17F | 17G | 17H | 17I | 17J | 17K | 17L | 17M | 17N | 17O | 17P | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ1716 | ζ172 | ζ173 | ζ174 | ζ175 | ζ176 | ζ177 | ζ178 | ζ179 | ζ1710 | ζ1711 | ζ1712 | ζ1713 | ζ1714 | ζ1715 | ζ17 | linear of order 17 faithful |
ρ3 | 1 | ζ1715 | ζ174 | ζ176 | ζ178 | ζ1710 | ζ1712 | ζ1714 | ζ1716 | ζ17 | ζ173 | ζ175 | ζ177 | ζ179 | ζ1711 | ζ1713 | ζ172 | linear of order 17 faithful |
ρ4 | 1 | ζ1714 | ζ176 | ζ179 | ζ1712 | ζ1715 | ζ17 | ζ174 | ζ177 | ζ1710 | ζ1713 | ζ1716 | ζ172 | ζ175 | ζ178 | ζ1711 | ζ173 | linear of order 17 faithful |
ρ5 | 1 | ζ1713 | ζ178 | ζ1712 | ζ1716 | ζ173 | ζ177 | ζ1711 | ζ1715 | ζ172 | ζ176 | ζ1710 | ζ1714 | ζ17 | ζ175 | ζ179 | ζ174 | linear of order 17 faithful |
ρ6 | 1 | ζ1712 | ζ1710 | ζ1715 | ζ173 | ζ178 | ζ1713 | ζ17 | ζ176 | ζ1711 | ζ1716 | ζ174 | ζ179 | ζ1714 | ζ172 | ζ177 | ζ175 | linear of order 17 faithful |
ρ7 | 1 | ζ1711 | ζ1712 | ζ17 | ζ177 | ζ1713 | ζ172 | ζ178 | ζ1714 | ζ173 | ζ179 | ζ1715 | ζ174 | ζ1710 | ζ1716 | ζ175 | ζ176 | linear of order 17 faithful |
ρ8 | 1 | ζ1710 | ζ1714 | ζ174 | ζ1711 | ζ17 | ζ178 | ζ1715 | ζ175 | ζ1712 | ζ172 | ζ179 | ζ1716 | ζ176 | ζ1713 | ζ173 | ζ177 | linear of order 17 faithful |
ρ9 | 1 | ζ179 | ζ1716 | ζ177 | ζ1715 | ζ176 | ζ1714 | ζ175 | ζ1713 | ζ174 | ζ1712 | ζ173 | ζ1711 | ζ172 | ζ1710 | ζ17 | ζ178 | linear of order 17 faithful |
ρ10 | 1 | ζ178 | ζ17 | ζ1710 | ζ172 | ζ1711 | ζ173 | ζ1712 | ζ174 | ζ1713 | ζ175 | ζ1714 | ζ176 | ζ1715 | ζ177 | ζ1716 | ζ179 | linear of order 17 faithful |
ρ11 | 1 | ζ177 | ζ173 | ζ1713 | ζ176 | ζ1716 | ζ179 | ζ172 | ζ1712 | ζ175 | ζ1715 | ζ178 | ζ17 | ζ1711 | ζ174 | ζ1714 | ζ1710 | linear of order 17 faithful |
ρ12 | 1 | ζ176 | ζ175 | ζ1716 | ζ1710 | ζ174 | ζ1715 | ζ179 | ζ173 | ζ1714 | ζ178 | ζ172 | ζ1713 | ζ177 | ζ17 | ζ1712 | ζ1711 | linear of order 17 faithful |
ρ13 | 1 | ζ175 | ζ177 | ζ172 | ζ1714 | ζ179 | ζ174 | ζ1716 | ζ1711 | ζ176 | ζ17 | ζ1713 | ζ178 | ζ173 | ζ1715 | ζ1710 | ζ1712 | linear of order 17 faithful |
ρ14 | 1 | ζ174 | ζ179 | ζ175 | ζ17 | ζ1714 | ζ1710 | ζ176 | ζ172 | ζ1715 | ζ1711 | ζ177 | ζ173 | ζ1716 | ζ1712 | ζ178 | ζ1713 | linear of order 17 faithful |
ρ15 | 1 | ζ173 | ζ1711 | ζ178 | ζ175 | ζ172 | ζ1716 | ζ1713 | ζ1710 | ζ177 | ζ174 | ζ17 | ζ1715 | ζ1712 | ζ179 | ζ176 | ζ1714 | linear of order 17 faithful |
ρ16 | 1 | ζ172 | ζ1713 | ζ1711 | ζ179 | ζ177 | ζ175 | ζ173 | ζ17 | ζ1716 | ζ1714 | ζ1712 | ζ1710 | ζ178 | ζ176 | ζ174 | ζ1715 | linear of order 17 faithful |
ρ17 | 1 | ζ17 | ζ1715 | ζ1714 | ζ1713 | ζ1712 | ζ1711 | ζ1710 | ζ179 | ζ178 | ζ177 | ζ176 | ζ175 | ζ174 | ζ173 | ζ172 | ζ1716 | linear of order 17 faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)
G:=sub<Sym(17)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)]])
G:=TransitiveGroup(17,1);
C17 is a maximal subgroup of
D17 C289
C17 is a maximal quotient of C289
Matrix representation of C17 ►in GL1(𝔽103) generated by
100 |
G:=sub<GL(1,GF(103))| [100] >;
C17 in GAP, Magma, Sage, TeX
C_{17}
% in TeX
G:=Group("C17");
// GroupNames label
G:=SmallGroup(17,1);
// by ID
G=gap.SmallGroup(17,1);
# by ID
G:=PCGroup([1,-17]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^17=1>;
// generators/relations
Export
Subgroup lattice of C17 in TeX
Character table of C17 in TeX