metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D9, C9⋊C2, C3.S3, sometimes denoted D18 or Dih9 or Dih18, SmallGroup(18,1)
Series: Derived ►Chief ►Lower central ►Upper central
C9 — D9 |
Generators and relations for D9
G = < a,b | a9=b2=1, bab=a-1 >
Character table of D9
class | 1 | 2 | 3 | 9A | 9B | 9C | |
size | 1 | 9 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | orthogonal faithful |
ρ5 | 2 | 0 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | orthogonal faithful |
ρ6 | 2 | 0 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9)
(1 9)(2 8)(3 7)(4 6)
G:=sub<Sym(9)| (1,2,3,4,5,6,7,8,9), (1,9)(2,8)(3,7)(4,6)>;
G:=Group( (1,2,3,4,5,6,7,8,9), (1,9)(2,8)(3,7)(4,6) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9)], [(1,9),(2,8),(3,7),(4,6)]])
G:=TransitiveGroup(9,3);
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)
(1 13)(2 12)(3 11)(4 10)(5 18)(6 17)(7 16)(8 15)(9 14)
G:=sub<Sym(18)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18)], [(1,13),(2,12),(3,11),(4,10),(5,18),(6,17),(7,16),(8,15),(9,14)]])
G:=TransitiveGroup(18,5);
D9 is a maximal subgroup of
C9⋊C6 C9⋊S3 C3.S4 C52⋊D9
D9p: D27 D45 D63 D99 D117 D153 D171 D207 ...
D9 is a maximal quotient of
C9⋊S3 C3.S4 C52⋊D9
C3p.S3: Dic9 D27 D45 D63 D99 D117 D153 D171 ...
action | f(x) | Disc(f) |
---|---|---|
9T3 | x9+3x8-67x7-226x6+699x5+1211x4-3137x3+940x2+904x-392 | 222·74·132·196·292·2294·5472 |
Matrix representation of D9 ►in GL2(𝔽17) generated by
16 | 10 |
7 | 14 |
14 | 6 |
10 | 3 |
G:=sub<GL(2,GF(17))| [16,7,10,14],[14,10,6,3] >;
D9 in GAP, Magma, Sage, TeX
D_9
% in TeX
G:=Group("D9");
// GroupNames label
G:=SmallGroup(18,1);
// by ID
G=gap.SmallGroup(18,1);
# by ID
G:=PCGroup([3,-2,-3,-3,97,22,110]);
// Polycyclic
G:=Group<a,b|a^9=b^2=1,b*a*b=a^-1>;
// generators/relations
Export