metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D17, C17⋊C2, sometimes denoted D34 or Dih17 or Dih34, SmallGroup(34,1)
Series: Derived ►Chief ►Lower central ►Upper central
C17 — D17 |
Generators and relations for D17
G = < a,b | a17=b2=1, bab=a-1 >
Character table of D17
class | 1 | 2 | 17A | 17B | 17C | 17D | 17E | 17F | 17G | 17H | |
size | 1 | 17 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ1715+ζ172 | ζ1714+ζ173 | ζ1713+ζ174 | ζ1712+ζ175 | ζ1711+ζ176 | ζ1710+ζ177 | ζ179+ζ178 | ζ1716+ζ17 | orthogonal faithful |
ρ4 | 2 | 0 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1714+ζ173 | ζ179+ζ178 | ζ1713+ζ174 | ζ1716+ζ17 | ζ1711+ζ176 | ζ1712+ζ175 | orthogonal faithful |
ρ5 | 2 | 0 | ζ179+ζ178 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1714+ζ173 | ζ1710+ζ177 | ζ1711+ζ176 | ζ1715+ζ172 | ζ1713+ζ174 | orthogonal faithful |
ρ6 | 2 | 0 | ζ1714+ζ173 | ζ1713+ζ174 | ζ1711+ζ176 | ζ1716+ζ17 | ζ179+ζ178 | ζ1715+ζ172 | ζ1712+ζ175 | ζ1710+ζ177 | orthogonal faithful |
ρ7 | 2 | 0 | ζ1711+ζ176 | ζ179+ζ178 | ζ1712+ζ175 | ζ1715+ζ172 | ζ1716+ζ17 | ζ1713+ζ174 | ζ1710+ζ177 | ζ1714+ζ173 | orthogonal faithful |
ρ8 | 2 | 0 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1713+ζ174 | ζ1715+ζ172 | ζ179+ζ178 | ζ1714+ζ173 | ζ1711+ζ176 | orthogonal faithful |
ρ9 | 2 | 0 | ζ1713+ζ174 | ζ1711+ζ176 | ζ179+ζ178 | ζ1710+ζ177 | ζ1712+ζ175 | ζ1714+ζ173 | ζ1716+ζ17 | ζ1715+ζ172 | orthogonal faithful |
ρ10 | 2 | 0 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1711+ζ176 | ζ1714+ζ173 | ζ1712+ζ175 | ζ1713+ζ174 | ζ179+ζ178 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)
G:=sub<Sym(17)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10)]])
G:=TransitiveGroup(17,2);
D17 is a maximal subgroup of
C17⋊C4
D17p: D51 D85 D119 D187 D221 ...
D17 is a maximal quotient of
Dic17
D17p: D51 D85 D119 D187 D221 ...
Matrix representation of D17 ►in GL2(𝔽103) generated by
27 | 102 |
1 | 0 |
27 | 102 |
7 | 76 |
G:=sub<GL(2,GF(103))| [27,1,102,0],[27,7,102,76] >;
D17 in GAP, Magma, Sage, TeX
D_{17}
% in TeX
G:=Group("D17");
// GroupNames label
G:=SmallGroup(34,1);
// by ID
G=gap.SmallGroup(34,1);
# by ID
G:=PCGroup([2,-2,-17,129]);
// Polycyclic
G:=Group<a,b|a^17=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D17 in TeX
Character table of D17 in TeX