p-group, cyclic, abelian, monomial
Aliases: C25, also denoted Z25, SmallGroup(25,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C25 |
C1 — C25 |
C1 — C25 |
Generators and relations for C25
G = < a | a25=1 >
Character table of C25
class | 1 | 5A | 5B | 5C | 5D | 25A | 25B | 25C | 25D | 25E | 25F | 25G | 25H | 25I | 25J | 25K | 25L | 25M | 25N | 25O | 25P | 25Q | 25R | 25S | 25T | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ255 | ζ2510 | ζ2515 | ζ2520 | ζ254 | ζ2517 | ζ2513 | ζ259 | ζ25 | ζ256 | ζ2511 | ζ2516 | ζ2522 | ζ252 | ζ257 | ζ2512 | ζ2518 | ζ2523 | ζ253 | ζ258 | ζ2514 | ζ2519 | ζ2524 | ζ2521 | linear of order 25 faithful |
ρ3 | 1 | ζ2510 | ζ2520 | ζ255 | ζ2515 | ζ258 | ζ259 | ζ25 | ζ2518 | ζ252 | ζ2512 | ζ2522 | ζ257 | ζ2519 | ζ254 | ζ2514 | ζ2524 | ζ2511 | ζ2521 | ζ256 | ζ2516 | ζ253 | ζ2513 | ζ2523 | ζ2517 | linear of order 25 faithful |
ρ4 | 1 | ζ2515 | ζ255 | ζ2520 | ζ2510 | ζ2512 | ζ25 | ζ2514 | ζ252 | ζ253 | ζ2518 | ζ258 | ζ2523 | ζ2516 | ζ256 | ζ2521 | ζ2511 | ζ254 | ζ2519 | ζ259 | ζ2524 | ζ2517 | ζ257 | ζ2522 | ζ2513 | linear of order 25 faithful |
ρ5 | 1 | ζ2520 | ζ2515 | ζ2510 | ζ255 | ζ2516 | ζ2518 | ζ252 | ζ2511 | ζ254 | ζ2524 | ζ2519 | ζ2514 | ζ2513 | ζ258 | ζ253 | ζ2523 | ζ2522 | ζ2517 | ζ2512 | ζ257 | ζ256 | ζ25 | ζ2521 | ζ259 | linear of order 25 faithful |
ρ6 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ52 | ζ53 | ζ54 | ζ5 | ζ5 | ζ5 | ζ5 | ζ52 | ζ52 | ζ52 | ζ52 | ζ53 | ζ53 | ζ53 | ζ53 | ζ54 | ζ54 | ζ54 | ζ5 | linear of order 5 |
ρ7 | 1 | ζ255 | ζ2510 | ζ2515 | ζ2520 | ζ2524 | ζ252 | ζ253 | ζ254 | ζ256 | ζ2511 | ζ2516 | ζ2521 | ζ257 | ζ2512 | ζ2517 | ζ2522 | ζ258 | ζ2513 | ζ2518 | ζ2523 | ζ259 | ζ2514 | ζ2519 | ζ25 | linear of order 25 faithful |
ρ8 | 1 | ζ2510 | ζ2520 | ζ255 | ζ2515 | ζ253 | ζ2519 | ζ2516 | ζ2513 | ζ257 | ζ2517 | ζ252 | ζ2512 | ζ254 | ζ2514 | ζ2524 | ζ259 | ζ25 | ζ2511 | ζ2521 | ζ256 | ζ2523 | ζ258 | ζ2518 | ζ2522 | linear of order 25 faithful |
ρ9 | 1 | ζ2515 | ζ255 | ζ2520 | ζ2510 | ζ257 | ζ2511 | ζ254 | ζ2522 | ζ258 | ζ2523 | ζ2513 | ζ253 | ζ25 | ζ2516 | ζ256 | ζ2521 | ζ2519 | ζ259 | ζ2524 | ζ2514 | ζ2512 | ζ252 | ζ2517 | ζ2518 | linear of order 25 faithful |
ρ10 | 1 | ζ2520 | ζ2515 | ζ2510 | ζ255 | ζ2511 | ζ253 | ζ2517 | ζ256 | ζ259 | ζ254 | ζ2524 | ζ2519 | ζ2523 | ζ2518 | ζ2513 | ζ258 | ζ2512 | ζ257 | ζ252 | ζ2522 | ζ25 | ζ2521 | ζ2516 | ζ2514 | linear of order 25 faithful |
ρ11 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ54 | ζ5 | ζ53 | ζ52 | ζ52 | ζ52 | ζ52 | ζ54 | ζ54 | ζ54 | ζ54 | ζ5 | ζ5 | ζ5 | ζ5 | ζ53 | ζ53 | ζ53 | ζ52 | linear of order 5 |
ρ12 | 1 | ζ255 | ζ2510 | ζ2515 | ζ2520 | ζ2519 | ζ2512 | ζ2518 | ζ2524 | ζ2511 | ζ2516 | ζ2521 | ζ25 | ζ2517 | ζ2522 | ζ252 | ζ257 | ζ2523 | ζ253 | ζ258 | ζ2513 | ζ254 | ζ259 | ζ2514 | ζ256 | linear of order 25 faithful |
ρ13 | 1 | ζ2510 | ζ2520 | ζ255 | ζ2515 | ζ2523 | ζ254 | ζ256 | ζ258 | ζ2512 | ζ2522 | ζ257 | ζ2517 | ζ2514 | ζ2524 | ζ259 | ζ2519 | ζ2516 | ζ25 | ζ2511 | ζ2521 | ζ2518 | ζ253 | ζ2513 | ζ252 | linear of order 25 faithful |
ρ14 | 1 | ζ2515 | ζ255 | ζ2520 | ζ2510 | ζ252 | ζ2521 | ζ2519 | ζ2517 | ζ2513 | ζ253 | ζ2518 | ζ258 | ζ2511 | ζ25 | ζ2516 | ζ256 | ζ259 | ζ2524 | ζ2514 | ζ254 | ζ257 | ζ2522 | ζ2512 | ζ2523 | linear of order 25 faithful |
ρ15 | 1 | ζ2520 | ζ2515 | ζ2510 | ζ255 | ζ256 | ζ2513 | ζ257 | ζ25 | ζ2514 | ζ259 | ζ254 | ζ2524 | ζ258 | ζ253 | ζ2523 | ζ2518 | ζ252 | ζ2522 | ζ2517 | ζ2512 | ζ2521 | ζ2516 | ζ2511 | ζ2519 | linear of order 25 faithful |
ρ16 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ5 | ζ54 | ζ52 | ζ53 | ζ53 | ζ53 | ζ53 | ζ5 | ζ5 | ζ5 | ζ5 | ζ54 | ζ54 | ζ54 | ζ54 | ζ52 | ζ52 | ζ52 | ζ53 | linear of order 5 |
ρ17 | 1 | ζ255 | ζ2510 | ζ2515 | ζ2520 | ζ2514 | ζ2522 | ζ258 | ζ2519 | ζ2516 | ζ2521 | ζ25 | ζ256 | ζ252 | ζ257 | ζ2512 | ζ2517 | ζ2513 | ζ2518 | ζ2523 | ζ253 | ζ2524 | ζ254 | ζ259 | ζ2511 | linear of order 25 faithful |
ρ18 | 1 | ζ2510 | ζ2520 | ζ255 | ζ2515 | ζ2518 | ζ2514 | ζ2521 | ζ253 | ζ2517 | ζ252 | ζ2512 | ζ2522 | ζ2524 | ζ259 | ζ2519 | ζ254 | ζ256 | ζ2516 | ζ25 | ζ2511 | ζ2513 | ζ2523 | ζ258 | ζ257 | linear of order 25 faithful |
ρ19 | 1 | ζ2515 | ζ255 | ζ2520 | ζ2510 | ζ2522 | ζ256 | ζ259 | ζ2512 | ζ2518 | ζ258 | ζ2523 | ζ2513 | ζ2521 | ζ2511 | ζ25 | ζ2516 | ζ2524 | ζ2514 | ζ254 | ζ2519 | ζ252 | ζ2517 | ζ257 | ζ253 | linear of order 25 faithful |
ρ20 | 1 | ζ2520 | ζ2515 | ζ2510 | ζ255 | ζ25 | ζ2523 | ζ2522 | ζ2521 | ζ2519 | ζ2514 | ζ259 | ζ254 | ζ2518 | ζ2513 | ζ258 | ζ253 | ζ2517 | ζ2512 | ζ257 | ζ252 | ζ2516 | ζ2511 | ζ256 | ζ2524 | linear of order 25 faithful |
ρ21 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ53 | ζ52 | ζ5 | ζ54 | ζ54 | ζ54 | ζ54 | ζ53 | ζ53 | ζ53 | ζ53 | ζ52 | ζ52 | ζ52 | ζ52 | ζ5 | ζ5 | ζ5 | ζ54 | linear of order 5 |
ρ22 | 1 | ζ255 | ζ2510 | ζ2515 | ζ2520 | ζ259 | ζ257 | ζ2523 | ζ2514 | ζ2521 | ζ25 | ζ256 | ζ2511 | ζ2512 | ζ2517 | ζ2522 | ζ252 | ζ253 | ζ258 | ζ2513 | ζ2518 | ζ2519 | ζ2524 | ζ254 | ζ2516 | linear of order 25 faithful |
ρ23 | 1 | ζ2510 | ζ2520 | ζ255 | ζ2515 | ζ2513 | ζ2524 | ζ2511 | ζ2523 | ζ2522 | ζ257 | ζ2517 | ζ252 | ζ259 | ζ2519 | ζ254 | ζ2514 | ζ2521 | ζ256 | ζ2516 | ζ25 | ζ258 | ζ2518 | ζ253 | ζ2512 | linear of order 25 faithful |
ρ24 | 1 | ζ2515 | ζ255 | ζ2520 | ζ2510 | ζ2517 | ζ2516 | ζ2524 | ζ257 | ζ2523 | ζ2513 | ζ253 | ζ2518 | ζ256 | ζ2521 | ζ2511 | ζ25 | ζ2514 | ζ254 | ζ2519 | ζ259 | ζ2522 | ζ2512 | ζ252 | ζ258 | linear of order 25 faithful |
ρ25 | 1 | ζ2520 | ζ2515 | ζ2510 | ζ255 | ζ2521 | ζ258 | ζ2512 | ζ2516 | ζ2524 | ζ2519 | ζ2514 | ζ259 | ζ253 | ζ2523 | ζ2518 | ζ2513 | ζ257 | ζ252 | ζ2522 | ζ2517 | ζ2511 | ζ256 | ζ25 | ζ254 | linear of order 25 faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)
G:=sub<Sym(25)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)]])
G:=TransitiveGroup(25,1);
C25 is a maximal subgroup of
D25 C125 5- 1+2 C11⋊C25 C24⋊C25
C25 is a maximal quotient of C125 C11⋊C25 C24⋊C25
Matrix representation of C25 ►in GL1(𝔽101) generated by
80 |
G:=sub<GL(1,GF(101))| [80] >;
C25 in GAP, Magma, Sage, TeX
C_{25}
% in TeX
G:=Group("C25");
// GroupNames label
G:=SmallGroup(25,1);
// by ID
G=gap.SmallGroup(25,1);
# by ID
G:=PCGroup([2,-5,-5,10]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^25=1>;
// generators/relations
Export
Subgroup lattice of C25 in TeX
Character table of C25 in TeX