metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D25, C25⋊C2, C5.D5, sometimes denoted D50 or Dih25 or Dih50, SmallGroup(50,1)
Series: Derived ►Chief ►Lower central ►Upper central
C25 — D25 |
Generators and relations for D25
G = < a,b | a25=b2=1, bab=a-1 >
Character table of D25
class | 1 | 2 | 5A | 5B | 25A | 25B | 25C | 25D | 25E | 25F | 25G | 25H | 25I | 25J | |
size | 1 | 25 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ4 | 2 | 0 | 2 | 2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ5 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ2521+ζ254 | ζ2524+ζ25 | ζ2519+ζ256 | ζ2514+ζ2511 | ζ2518+ζ257 | ζ2513+ζ2512 | ζ2517+ζ258 | ζ2522+ζ253 | ζ2523+ζ252 | ζ2516+ζ259 | orthogonal faithful |
ρ6 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ2517+ζ258 | ζ2523+ζ252 | ζ2513+ζ2512 | ζ2522+ζ253 | ζ2514+ζ2511 | ζ2524+ζ25 | ζ2516+ζ259 | ζ2519+ζ256 | ζ2521+ζ254 | ζ2518+ζ257 | orthogonal faithful |
ρ7 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ2524+ζ25 | ζ2519+ζ256 | ζ2514+ζ2511 | ζ2516+ζ259 | ζ2517+ζ258 | ζ2522+ζ253 | ζ2523+ζ252 | ζ2518+ζ257 | ζ2513+ζ2512 | ζ2521+ζ254 | orthogonal faithful |
ρ8 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ2522+ζ253 | ζ2518+ζ257 | ζ2517+ζ258 | ζ2523+ζ252 | ζ2524+ζ25 | ζ2516+ζ259 | ζ2519+ζ256 | ζ2521+ζ254 | ζ2514+ζ2511 | ζ2513+ζ2512 | orthogonal faithful |
ρ9 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ2518+ζ257 | ζ2517+ζ258 | ζ2523+ζ252 | ζ2513+ζ2512 | ζ2519+ζ256 | ζ2521+ζ254 | ζ2514+ζ2511 | ζ2524+ζ25 | ζ2516+ζ259 | ζ2522+ζ253 | orthogonal faithful |
ρ10 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ2514+ζ2511 | ζ2516+ζ259 | ζ2521+ζ254 | ζ2524+ζ25 | ζ2513+ζ2512 | ζ2517+ζ258 | ζ2522+ζ253 | ζ2523+ζ252 | ζ2518+ζ257 | ζ2519+ζ256 | orthogonal faithful |
ρ11 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ2523+ζ252 | ζ2513+ζ2512 | ζ2522+ζ253 | ζ2518+ζ257 | ζ2516+ζ259 | ζ2519+ζ256 | ζ2521+ζ254 | ζ2514+ζ2511 | ζ2524+ζ25 | ζ2517+ζ258 | orthogonal faithful |
ρ12 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ2513+ζ2512 | ζ2522+ζ253 | ζ2518+ζ257 | ζ2517+ζ258 | ζ2521+ζ254 | ζ2514+ζ2511 | ζ2524+ζ25 | ζ2516+ζ259 | ζ2519+ζ256 | ζ2523+ζ252 | orthogonal faithful |
ρ13 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ2519+ζ256 | ζ2514+ζ2511 | ζ2516+ζ259 | ζ2521+ζ254 | ζ2523+ζ252 | ζ2518+ζ257 | ζ2513+ζ2512 | ζ2517+ζ258 | ζ2522+ζ253 | ζ2524+ζ25 | orthogonal faithful |
ρ14 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ2516+ζ259 | ζ2521+ζ254 | ζ2524+ζ25 | ζ2519+ζ256 | ζ2522+ζ253 | ζ2523+ζ252 | ζ2518+ζ257 | ζ2513+ζ2512 | ζ2517+ζ258 | ζ2514+ζ2511 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)
G:=sub<Sym(25)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14)]])
G:=TransitiveGroup(25,4);
D25 is a maximal subgroup of
C25⋊C4 D75 D125 C25⋊C10 C25⋊D5 D175
D25 is a maximal quotient of Dic25 D75 D125 C25⋊D5 D175
Matrix representation of D25 ►in GL2(𝔽101) generated by
68 | 97 |
17 | 51 |
99 | 64 |
11 | 2 |
G:=sub<GL(2,GF(101))| [68,17,97,51],[99,11,64,2] >;
D25 in GAP, Magma, Sage, TeX
D_{25}
% in TeX
G:=Group("D25");
// GroupNames label
G:=SmallGroup(50,1);
// by ID
G=gap.SmallGroup(50,1);
# by ID
G:=PCGroup([3,-2,-5,-5,289,34,362]);
// Polycyclic
G:=Group<a,b|a^25=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D25 in TeX
Character table of D25 in TeX