direct product, abelian, monomial, 2-elementary
Aliases: C2×C22, SmallGroup(44,4)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C22 |
C1 — C2×C22 |
C1 — C2×C22 |
Generators and relations for C2×C22
G = < a,b | a2=b22=1, ab=ba >
(1 43)(2 44)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)
G:=sub<Sym(44)| (1,43)(2,44)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)>;
G:=Group( (1,43)(2,44)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44) );
G=PermutationGroup([[(1,43),(2,44),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)]])
C2×C22 is a maximal subgroup of
C11⋊D4
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 11A | ··· | 11J | 22A | ··· | 22AD |
order | 1 | 2 | 2 | 2 | 11 | ··· | 11 | 22 | ··· | 22 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C11 | C22 |
kernel | C2×C22 | C22 | C22 | C2 |
# reps | 1 | 3 | 10 | 30 |
Matrix representation of C2×C22 ►in GL2(𝔽23) generated by
22 | 0 |
0 | 1 |
10 | 0 |
0 | 7 |
G:=sub<GL(2,GF(23))| [22,0,0,1],[10,0,0,7] >;
C2×C22 in GAP, Magma, Sage, TeX
C_2\times C_{22}
% in TeX
G:=Group("C2xC22");
// GroupNames label
G:=SmallGroup(44,4);
// by ID
G=gap.SmallGroup(44,4);
# by ID
G:=PCGroup([3,-2,-2,-11]);
// Polycyclic
G:=Group<a,b|a^2=b^22=1,a*b=b*a>;
// generators/relations
Export