Copied to
clipboard

G = S3×C10order 60 = 22·3·5

Direct product of C10 and S3

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C10, C6⋊C10, C303C2, C154C22, C3⋊(C2×C10), SmallGroup(60,11)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C10
C1C3C15C5×S3 — S3×C10
C3 — S3×C10
C1C10

Generators and relations for S3×C10
 G = < a,b,c | a10=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C2
3C22
3C10
3C10
3C2×C10

Character table of S3×C10

 class 12A2B2C35A5B5C5D610A10B10C10D10E10F10G10H10I10J10K10L15A15B15C15D30A30B30C30D
 size 113321111211113333333322222222
ρ1111111111111111111111111111111    trivial
ρ211-1-11111111111-1-1-1-1-1-1-1-111111111    linear of order 2
ρ31-11-111111-1-1-1-1-11-1-1-1111-11111-1-1-1-1    linear of order 2
ρ41-1-1111111-1-1-1-1-1-1111-1-1-111111-1-1-1-1    linear of order 2
ρ51-1-111ζ5ζ53ζ52ζ54-1553545253ζ5ζ53ζ5252545ζ54ζ53ζ52ζ5ζ545453552    linear of order 10
ρ611111ζ5ζ53ζ52ζ541ζ5ζ53ζ54ζ52ζ53ζ5ζ53ζ52ζ52ζ54ζ5ζ54ζ53ζ52ζ5ζ54ζ54ζ53ζ5ζ52    linear of order 5
ρ711-1-11ζ53ζ54ζ5ζ521ζ53ζ54ζ52ζ554535455525352ζ54ζ5ζ53ζ52ζ52ζ54ζ53ζ5    linear of order 10
ρ811111ζ54ζ52ζ53ζ51ζ54ζ52ζ5ζ53ζ52ζ54ζ52ζ53ζ53ζ5ζ54ζ5ζ52ζ53ζ54ζ5ζ5ζ52ζ54ζ53    linear of order 5
ρ91-11-11ζ53ζ54ζ5ζ52-15354525ζ5453545ζ5ζ52ζ5352ζ54ζ5ζ53ζ525254535    linear of order 10
ρ101-1-111ζ53ζ54ζ5ζ52-1535452554ζ53ζ54ζ555253ζ52ζ54ζ5ζ53ζ525254535    linear of order 10
ρ1111-1-11ζ54ζ52ζ53ζ51ζ54ζ52ζ5ζ5352545253535545ζ52ζ53ζ54ζ5ζ5ζ52ζ54ζ53    linear of order 10
ρ1211111ζ53ζ54ζ5ζ521ζ53ζ54ζ52ζ5ζ54ζ53ζ54ζ5ζ5ζ52ζ53ζ52ζ54ζ5ζ53ζ52ζ52ζ54ζ53ζ5    linear of order 5
ρ131-11-11ζ5ζ53ζ52ζ54-15535452ζ5355352ζ52ζ54ζ554ζ53ζ52ζ5ζ545453552    linear of order 10
ρ141-11-11ζ54ζ52ζ53ζ5-15452553ζ52545253ζ53ζ5ζ545ζ52ζ53ζ54ζ55525453    linear of order 10
ρ151-1-111ζ54ζ52ζ53ζ5-1545255352ζ54ζ52ζ5353554ζ5ζ52ζ53ζ54ζ55525453    linear of order 10
ρ161-11-11ζ52ζ5ζ54ζ53-15255354ζ552554ζ54ζ53ζ5253ζ5ζ54ζ52ζ535355254    linear of order 10
ρ1711111ζ52ζ5ζ54ζ531ζ52ζ5ζ53ζ54ζ5ζ52ζ5ζ54ζ54ζ53ζ52ζ53ζ5ζ54ζ52ζ53ζ53ζ5ζ52ζ54    linear of order 5
ρ1811-1-11ζ52ζ5ζ54ζ531ζ52ζ5ζ53ζ5455255454535253ζ5ζ54ζ52ζ53ζ53ζ5ζ52ζ54    linear of order 10
ρ1911-1-11ζ5ζ53ζ52ζ541ζ5ζ53ζ54ζ5253553525254554ζ53ζ52ζ5ζ54ζ54ζ53ζ5ζ52    linear of order 10
ρ201-1-111ζ52ζ5ζ54ζ53-152553545ζ52ζ5ζ54545352ζ53ζ5ζ54ζ52ζ535355254    linear of order 10
ρ212-200-122221-2-2-2-200000000-1-1-1-11111    orthogonal lifted from D6
ρ222200-12222-1222200000000-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ232200-15535254-155354520000000053525545453552    complex lifted from C5×S3
ρ242200-15255453-152553540000000055452535355254    complex lifted from C5×S3
ρ252-200-154525351-2ζ54-2ζ52-2ζ5-2ζ53000000005253545ζ5ζ52ζ54ζ53    complex faithful
ρ262-200-152554531-2ζ52-2ζ5-2ζ53-2ζ54000000005545253ζ53ζ5ζ52ζ54    complex faithful
ρ272200-15354552-153545250000000054553525254535    complex lifted from C5×S3
ρ282-200-153545521-2ζ53-2ζ54-2ζ52-2ζ5000000005455352ζ52ζ54ζ53ζ5    complex faithful
ρ292200-15452535-154525530000000052535455525453    complex lifted from C5×S3
ρ302-200-155352541-2ζ5-2ζ53-2ζ54-2ζ52000000005352554ζ54ζ53ζ5ζ52    complex faithful

Permutation representations of S3×C10
On 30 points - transitive group 30T12
Generators in S30
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)
(1 16 25)(2 17 26)(3 18 27)(4 19 28)(5 20 29)(6 11 30)(7 12 21)(8 13 22)(9 14 23)(10 15 24)
(11 30)(12 21)(13 22)(14 23)(15 24)(16 25)(17 26)(18 27)(19 28)(20 29)

G:=sub<Sym(30)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,16,25)(2,17,26)(3,18,27)(4,19,28)(5,20,29)(6,11,30)(7,12,21)(8,13,22)(9,14,23)(10,15,24), (11,30)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,16,25)(2,17,26)(3,18,27)(4,19,28)(5,20,29)(6,11,30)(7,12,21)(8,13,22)(9,14,23)(10,15,24), (11,30)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30)], [(1,16,25),(2,17,26),(3,18,27),(4,19,28),(5,20,29),(6,11,30),(7,12,21),(8,13,22),(9,14,23),(10,15,24)], [(11,30),(12,21),(13,22),(14,23),(15,24),(16,25),(17,26),(18,27),(19,28),(20,29)])

G:=TransitiveGroup(30,12);

Matrix representation of S3×C10 in GL2(𝔽11) generated by

20
02
,
05
210
,
100
91
G:=sub<GL(2,GF(11))| [2,0,0,2],[0,2,5,10],[10,9,0,1] >;

S3×C10 in GAP, Magma, Sage, TeX

S_3\times C_{10}
% in TeX

G:=Group("S3xC10");
// GroupNames label

G:=SmallGroup(60,11);
// by ID

G=gap.SmallGroup(60,11);
# by ID

G:=PCGroup([4,-2,-2,-5,-3,643]);
// Polycyclic

G:=Group<a,b,c|a^10=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽