direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×C10, C6⋊C10, C30⋊3C2, C15⋊4C22, C3⋊(C2×C10), SmallGroup(60,11)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C10 |
Generators and relations for S3×C10
G = < a,b,c | a10=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >
Character table of S3×C10
class | 1 | 2A | 2B | 2C | 3 | 5A | 5B | 5C | 5D | 6 | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 15A | 15B | 15C | 15D | 30A | 30B | 30C | 30D | |
size | 1 | 1 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | ζ5 | ζ53 | ζ52 | ζ54 | -1 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | -ζ53 | ζ5 | ζ53 | ζ52 | -ζ52 | -ζ54 | -ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | -ζ54 | -ζ53 | -ζ5 | -ζ52 | linear of order 10 |
ρ6 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ53 | ζ52 | ζ54 | 1 | ζ5 | ζ53 | ζ54 | ζ52 | ζ53 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ5 | ζ52 | linear of order 5 |
ρ7 | 1 | 1 | -1 | -1 | 1 | ζ53 | ζ54 | ζ5 | ζ52 | 1 | ζ53 | ζ54 | ζ52 | ζ5 | -ζ54 | -ζ53 | -ζ54 | -ζ5 | -ζ5 | -ζ52 | -ζ53 | -ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ53 | ζ5 | linear of order 10 |
ρ8 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ52 | ζ53 | ζ5 | 1 | ζ54 | ζ52 | ζ5 | ζ53 | ζ52 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ54 | ζ53 | linear of order 5 |
ρ9 | 1 | -1 | 1 | -1 | 1 | ζ53 | ζ54 | ζ5 | ζ52 | -1 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | ζ54 | -ζ53 | -ζ54 | -ζ5 | ζ5 | ζ52 | ζ53 | -ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | -ζ52 | -ζ54 | -ζ53 | -ζ5 | linear of order 10 |
ρ10 | 1 | -1 | -1 | 1 | 1 | ζ53 | ζ54 | ζ5 | ζ52 | -1 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | -ζ54 | ζ53 | ζ54 | ζ5 | -ζ5 | -ζ52 | -ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | -ζ52 | -ζ54 | -ζ53 | -ζ5 | linear of order 10 |
ρ11 | 1 | 1 | -1 | -1 | 1 | ζ54 | ζ52 | ζ53 | ζ5 | 1 | ζ54 | ζ52 | ζ5 | ζ53 | -ζ52 | -ζ54 | -ζ52 | -ζ53 | -ζ53 | -ζ5 | -ζ54 | -ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ54 | ζ53 | linear of order 10 |
ρ12 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ54 | ζ5 | ζ52 | 1 | ζ53 | ζ54 | ζ52 | ζ5 | ζ54 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ53 | ζ5 | linear of order 5 |
ρ13 | 1 | -1 | 1 | -1 | 1 | ζ5 | ζ53 | ζ52 | ζ54 | -1 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | ζ53 | -ζ5 | -ζ53 | -ζ52 | ζ52 | ζ54 | ζ5 | -ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | -ζ54 | -ζ53 | -ζ5 | -ζ52 | linear of order 10 |
ρ14 | 1 | -1 | 1 | -1 | 1 | ζ54 | ζ52 | ζ53 | ζ5 | -1 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | ζ52 | -ζ54 | -ζ52 | -ζ53 | ζ53 | ζ5 | ζ54 | -ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | -ζ5 | -ζ52 | -ζ54 | -ζ53 | linear of order 10 |
ρ15 | 1 | -1 | -1 | 1 | 1 | ζ54 | ζ52 | ζ53 | ζ5 | -1 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | -ζ52 | ζ54 | ζ52 | ζ53 | -ζ53 | -ζ5 | -ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | -ζ5 | -ζ52 | -ζ54 | -ζ53 | linear of order 10 |
ρ16 | 1 | -1 | 1 | -1 | 1 | ζ52 | ζ5 | ζ54 | ζ53 | -1 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | ζ5 | -ζ52 | -ζ5 | -ζ54 | ζ54 | ζ53 | ζ52 | -ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | -ζ53 | -ζ5 | -ζ52 | -ζ54 | linear of order 10 |
ρ17 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ5 | ζ54 | ζ53 | 1 | ζ52 | ζ5 | ζ53 | ζ54 | ζ5 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ52 | ζ54 | linear of order 5 |
ρ18 | 1 | 1 | -1 | -1 | 1 | ζ52 | ζ5 | ζ54 | ζ53 | 1 | ζ52 | ζ5 | ζ53 | ζ54 | -ζ5 | -ζ52 | -ζ5 | -ζ54 | -ζ54 | -ζ53 | -ζ52 | -ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ52 | ζ54 | linear of order 10 |
ρ19 | 1 | 1 | -1 | -1 | 1 | ζ5 | ζ53 | ζ52 | ζ54 | 1 | ζ5 | ζ53 | ζ54 | ζ52 | -ζ53 | -ζ5 | -ζ53 | -ζ52 | -ζ52 | -ζ54 | -ζ5 | -ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ5 | ζ52 | linear of order 10 |
ρ20 | 1 | -1 | -1 | 1 | 1 | ζ52 | ζ5 | ζ54 | ζ53 | -1 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | -ζ5 | ζ52 | ζ5 | ζ54 | -ζ54 | -ζ53 | -ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | -ζ53 | -ζ5 | -ζ52 | -ζ54 | linear of order 10 |
ρ21 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ22 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ23 | 2 | 2 | 0 | 0 | -1 | 2ζ5 | 2ζ53 | 2ζ52 | 2ζ54 | -1 | 2ζ5 | 2ζ53 | 2ζ54 | 2ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | -ζ54 | -ζ53 | -ζ5 | -ζ52 | complex lifted from C5×S3 |
ρ24 | 2 | 2 | 0 | 0 | -1 | 2ζ52 | 2ζ5 | 2ζ54 | 2ζ53 | -1 | 2ζ52 | 2ζ5 | 2ζ53 | 2ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | -ζ53 | -ζ5 | -ζ52 | -ζ54 | complex lifted from C5×S3 |
ρ25 | 2 | -2 | 0 | 0 | -1 | 2ζ54 | 2ζ52 | 2ζ53 | 2ζ5 | 1 | -2ζ54 | -2ζ52 | -2ζ5 | -2ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | ζ5 | ζ52 | ζ54 | ζ53 | complex faithful |
ρ26 | 2 | -2 | 0 | 0 | -1 | 2ζ52 | 2ζ5 | 2ζ54 | 2ζ53 | 1 | -2ζ52 | -2ζ5 | -2ζ53 | -2ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | ζ53 | ζ5 | ζ52 | ζ54 | complex faithful |
ρ27 | 2 | 2 | 0 | 0 | -1 | 2ζ53 | 2ζ54 | 2ζ5 | 2ζ52 | -1 | 2ζ53 | 2ζ54 | 2ζ52 | 2ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | -ζ52 | -ζ54 | -ζ53 | -ζ5 | complex lifted from C5×S3 |
ρ28 | 2 | -2 | 0 | 0 | -1 | 2ζ53 | 2ζ54 | 2ζ5 | 2ζ52 | 1 | -2ζ53 | -2ζ54 | -2ζ52 | -2ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | ζ52 | ζ54 | ζ53 | ζ5 | complex faithful |
ρ29 | 2 | 2 | 0 | 0 | -1 | 2ζ54 | 2ζ52 | 2ζ53 | 2ζ5 | -1 | 2ζ54 | 2ζ52 | 2ζ5 | 2ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | -ζ5 | -ζ52 | -ζ54 | -ζ53 | complex lifted from C5×S3 |
ρ30 | 2 | -2 | 0 | 0 | -1 | 2ζ5 | 2ζ53 | 2ζ52 | 2ζ54 | 1 | -2ζ5 | -2ζ53 | -2ζ54 | -2ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | ζ54 | ζ53 | ζ5 | ζ52 | complex faithful |
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)
(1 13 25)(2 14 26)(3 15 27)(4 16 28)(5 17 29)(6 18 30)(7 19 21)(8 20 22)(9 11 23)(10 12 24)
(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 21)(20 22)
G:=sub<Sym(30)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,21)(8,20,22)(9,11,23)(10,12,24), (11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,21)(20,22)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,21)(8,20,22)(9,11,23)(10,12,24), (11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,21)(20,22) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30)], [(1,13,25),(2,14,26),(3,15,27),(4,16,28),(5,17,29),(6,18,30),(7,19,21),(8,20,22),(9,11,23),(10,12,24)], [(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,21),(20,22)]])
G:=TransitiveGroup(30,12);
S3×C10 is a maximal subgroup of
C15⋊D4 C5⋊D12
Matrix representation of S3×C10 ►in GL2(𝔽11) generated by
2 | 0 |
0 | 2 |
0 | 5 |
2 | 10 |
10 | 0 |
9 | 1 |
G:=sub<GL(2,GF(11))| [2,0,0,2],[0,2,5,10],[10,9,0,1] >;
S3×C10 in GAP, Magma, Sage, TeX
S_3\times C_{10}
% in TeX
G:=Group("S3xC10");
// GroupNames label
G:=SmallGroup(60,11);
// by ID
G=gap.SmallGroup(60,11);
# by ID
G:=PCGroup([4,-2,-2,-5,-3,643]);
// Polycyclic
G:=Group<a,b,c|a^10=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of S3×C10 in TeX
Character table of S3×C10 in TeX