p-group, cyclic, elementary abelian, simple, monomial
Aliases: C53, also denoted Z53, SmallGroup(53,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C53 |
C1 — C53 |
C1 — C53 |
C1 — C53 |
Generators and relations for C53
G = < a | a53=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53)
G:=sub<Sym(53)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53)]])
C53 is a maximal subgroup of
D53
53 conjugacy classes
class | 1 | 53A | ··· | 53AZ |
order | 1 | 53 | ··· | 53 |
size | 1 | 1 | ··· | 1 |
53 irreducible representations
dim | 1 | 1 |
type | + | |
image | C1 | C53 |
kernel | C53 | C1 |
# reps | 1 | 52 |
Matrix representation of C53 ►in GL1(𝔽107) generated by
105 |
G:=sub<GL(1,GF(107))| [105] >;
C53 in GAP, Magma, Sage, TeX
C_{53}
% in TeX
G:=Group("C53");
// GroupNames label
G:=SmallGroup(53,1);
// by ID
G=gap.SmallGroup(53,1);
# by ID
G:=PCGroup([1,-53]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^53=1>;
// generators/relations
Export