direct product, abelian, monomial, 2-elementary
Aliases: C2×C26, SmallGroup(52,5)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C26 |
C1 — C2×C26 |
C1 — C2×C26 |
Generators and relations for C2×C26
G = < a,b | a2=b26=1, ab=ba >
(1 51)(2 52)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 49)(26 50)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)
G:=sub<Sym(52)| (1,51)(2,52)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)>;
G:=Group( (1,51)(2,52)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52) );
G=PermutationGroup([[(1,51),(2,52),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,49),(26,50)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)]])
C2×C26 is a maximal subgroup of
C13⋊D4 C13⋊A4
52 conjugacy classes
class | 1 | 2A | 2B | 2C | 13A | ··· | 13L | 26A | ··· | 26AJ |
order | 1 | 2 | 2 | 2 | 13 | ··· | 13 | 26 | ··· | 26 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
52 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C13 | C26 |
kernel | C2×C26 | C26 | C22 | C2 |
# reps | 1 | 3 | 12 | 36 |
Matrix representation of C2×C26 ►in GL2(𝔽53) generated by
52 | 0 |
0 | 52 |
10 | 0 |
0 | 38 |
G:=sub<GL(2,GF(53))| [52,0,0,52],[10,0,0,38] >;
C2×C26 in GAP, Magma, Sage, TeX
C_2\times C_{26}
% in TeX
G:=Group("C2xC26");
// GroupNames label
G:=SmallGroup(52,5);
// by ID
G=gap.SmallGroup(52,5);
# by ID
G:=PCGroup([3,-2,-2,-13]);
// Polycyclic
G:=Group<a,b|a^2=b^26=1,a*b=b*a>;
// generators/relations
Export