direct product, abelian, monomial, 5-elementary
Aliases: C5×C10, SmallGroup(50,5)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5×C10 |
C1 — C5×C10 |
C1 — C5×C10 |
Generators and relations for C5×C10
G = < a,b | a5=b10=1, ab=ba >
(1 21 20 43 33)(2 22 11 44 34)(3 23 12 45 35)(4 24 13 46 36)(5 25 14 47 37)(6 26 15 48 38)(7 27 16 49 39)(8 28 17 50 40)(9 29 18 41 31)(10 30 19 42 32)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)
G:=sub<Sym(50)| (1,21,20,43,33)(2,22,11,44,34)(3,23,12,45,35)(4,24,13,46,36)(5,25,14,47,37)(6,26,15,48,38)(7,27,16,49,39)(8,28,17,50,40)(9,29,18,41,31)(10,30,19,42,32), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)>;
G:=Group( (1,21,20,43,33)(2,22,11,44,34)(3,23,12,45,35)(4,24,13,46,36)(5,25,14,47,37)(6,26,15,48,38)(7,27,16,49,39)(8,28,17,50,40)(9,29,18,41,31)(10,30,19,42,32), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50) );
G=PermutationGroup([[(1,21,20,43,33),(2,22,11,44,34),(3,23,12,45,35),(4,24,13,46,36),(5,25,14,47,37),(6,26,15,48,38),(7,27,16,49,39),(8,28,17,50,40),(9,29,18,41,31),(10,30,19,42,32)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50)]])
C5×C10 is a maximal subgroup of
C52⋊6C4
50 conjugacy classes
class | 1 | 2 | 5A | ··· | 5X | 10A | ··· | 10X |
order | 1 | 2 | 5 | ··· | 5 | 10 | ··· | 10 |
size | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C5 | C10 |
kernel | C5×C10 | C52 | C10 | C5 |
# reps | 1 | 1 | 24 | 24 |
Matrix representation of C5×C10 ►in GL2(𝔽11) generated by
3 | 0 |
0 | 1 |
2 | 0 |
0 | 2 |
G:=sub<GL(2,GF(11))| [3,0,0,1],[2,0,0,2] >;
C5×C10 in GAP, Magma, Sage, TeX
C_5\times C_{10}
% in TeX
G:=Group("C5xC10");
// GroupNames label
G:=SmallGroup(50,5);
// by ID
G=gap.SmallGroup(50,5);
# by ID
G:=PCGroup([3,-2,-5,-5]);
// Polycyclic
G:=Group<a,b|a^5=b^10=1,a*b=b*a>;
// generators/relations
Export