metabelian, supersoluble, monomial, A-group
Aliases: C5⋊D5, C52⋊2C2, SmallGroup(50,4)
Series: Derived ►Chief ►Lower central ►Upper central
C52 — C5⋊D5 |
Generators and relations for C5⋊D5
G = < a,b,c | a5=b5=c2=1, ab=ba, cac=a-1, cbc=b-1 >
Character table of C5⋊D5
class | 1 | 2 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 5J | 5K | 5L | |
size | 1 | 25 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | -1+√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ4 | 2 | 0 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ5 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ7 | 2 | 0 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 0 | 2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | 2 | orthogonal lifted from D5 |
ρ9 | 2 | 0 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | 0 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | orthogonal lifted from D5 |
ρ11 | 2 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ12 | 2 | 0 | -1-√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ13 | 2 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ14 | 2 | 0 | 2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | 2 | orthogonal lifted from D5 |
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)
(1 24 19 14 9)(2 25 20 15 10)(3 21 16 11 6)(4 22 17 12 7)(5 23 18 13 8)
(1 9)(2 8)(3 7)(4 6)(5 10)(11 22)(12 21)(13 25)(14 24)(15 23)(16 17)(18 20)
G:=sub<Sym(25)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,24,19,14,9)(2,25,20,15,10)(3,21,16,11,6)(4,22,17,12,7)(5,23,18,13,8), (1,9)(2,8)(3,7)(4,6)(5,10)(11,22)(12,21)(13,25)(14,24)(15,23)(16,17)(18,20)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,24,19,14,9)(2,25,20,15,10)(3,21,16,11,6)(4,22,17,12,7)(5,23,18,13,8), (1,9)(2,8)(3,7)(4,6)(5,10)(11,22)(12,21)(13,25)(14,24)(15,23)(16,17)(18,20) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25)], [(1,24,19,14,9),(2,25,20,15,10),(3,21,16,11,6),(4,22,17,12,7),(5,23,18,13,8)], [(1,9),(2,8),(3,7),(4,6),(5,10),(11,22),(12,21),(13,25),(14,24),(15,23),(16,17),(18,20)]])
G:=TransitiveGroup(25,5);
C5⋊D5 is a maximal subgroup of
C5⋊F5 C52⋊C4 D52 C52⋊C6 C5⋊D15 C52⋊C10 C25⋊D5 C53⋊C2 C5⋊D35
C5⋊D5 is a maximal quotient of
C52⋊6C4 C5⋊D15 C25⋊D5 He5⋊C2 C53⋊C2 C5⋊D35
Matrix representation of C5⋊D5 ►in GL4(𝔽11) generated by
8 | 1 | 0 | 0 |
2 | 10 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 10 | 3 |
10 | 10 | 0 | 0 |
9 | 8 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 10 | 3 |
0 | 7 | 0 | 0 |
8 | 0 | 0 | 0 |
0 | 0 | 10 | 0 |
0 | 0 | 8 | 1 |
G:=sub<GL(4,GF(11))| [8,2,0,0,1,10,0,0,0,0,0,10,0,0,1,3],[10,9,0,0,10,8,0,0,0,0,0,10,0,0,1,3],[0,8,0,0,7,0,0,0,0,0,10,8,0,0,0,1] >;
C5⋊D5 in GAP, Magma, Sage, TeX
C_5\rtimes D_5
% in TeX
G:=Group("C5:D5");
// GroupNames label
G:=SmallGroup(50,4);
// by ID
G=gap.SmallGroup(50,4);
# by ID
G:=PCGroup([3,-2,-5,-5,49,362]);
// Polycyclic
G:=Group<a,b,c|a^5=b^5=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C5⋊D5 in TeX
Character table of C5⋊D5 in TeX