Extensions 1→N→G→Q→1 with N=M4(2) and Q=Q8

Direct product G=N×Q with N=M4(2) and Q=Q8
dρLabelID
Q8×M4(2)64Q8xM4(2)128,1695

Semidirect products G=N:Q with N=M4(2) and Q=Q8
extensionφ:Q→Out NdρLabelID
M4(2)⋊1Q8 = M4(2)⋊Q8φ: Q8/C2C22 ⊆ Out M4(2)32M4(2):1Q8128,792
M4(2)⋊2Q8 = C423Q8φ: Q8/C2C22 ⊆ Out M4(2)32M4(2):2Q8128,793
M4(2)⋊3Q8 = M4(2)⋊3Q8φ: Q8/C4C2 ⊆ Out M4(2)64M4(2):3Q8128,1895
M4(2)⋊4Q8 = M4(2)⋊4Q8φ: Q8/C4C2 ⊆ Out M4(2)64M4(2):4Q8128,1896
M4(2)⋊5Q8 = M4(2)⋊5Q8φ: Q8/C4C2 ⊆ Out M4(2)64M4(2):5Q8128,1897
M4(2)⋊6Q8 = M4(2)⋊6Q8φ: Q8/C4C2 ⊆ Out M4(2)64M4(2):6Q8128,1898
M4(2)⋊7Q8 = M4(2)⋊7Q8φ: Q8/C4C2 ⊆ Out M4(2)32M4(2):7Q8128,718
M4(2)⋊8Q8 = M4(2)⋊8Q8φ: Q8/C4C2 ⊆ Out M4(2)64M4(2):8Q8128,729
M4(2)⋊9Q8 = M4(2)⋊9Q8φ: trivial image64M4(2):9Q8128,1694

Non-split extensions G=N.Q with N=M4(2) and Q=Q8
extensionφ:Q→Out NdρLabelID
M4(2).1Q8 = M4(2).Q8φ: Q8/C2C22 ⊆ Out M4(2)64M4(2).1Q8128,821
M4(2).2Q8 = M4(2).2Q8φ: Q8/C2C22 ⊆ Out M4(2)64M4(2).2Q8128,822
M4(2).3Q8 = M4(2).3Q8φ: Q8/C4C2 ⊆ Out M4(2)32M4(2).3Q8128,654
M4(2).4Q8 = C42.430D4φ: Q8/C4C2 ⊆ Out M4(2)64M4(2).4Q8128,682
M4(2).5Q8 = M4(2).5Q8φ: Q8/C4C2 ⊆ Out M4(2)64M4(2).5Q8128,683
M4(2).6Q8 = M4(2).6Q8φ: Q8/C4C2 ⊆ Out M4(2)64M4(2).6Q8128,684
M4(2).7Q8 = C42.128D4φ: Q8/C4C2 ⊆ Out M4(2)64M4(2).7Q8128,730

׿
×
𝔽