Copied to
clipboard

G = M4(2)⋊7Q8order 128 = 27

5th semidirect product of M4(2) and Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: M4(2)⋊7Q8, C42.435D4, C4⋊Q822C4, C4.28C4≀C2, C4.28(C4×Q8), C42.C27C4, C42.162(C2×C4), C23.573(C2×D4), (C22×C4).302D4, C22.11(C4⋊Q8), C426C4.10C2, (C4×M4(2)).26C2, C4.122(C22⋊Q8), (C2×C42).332C22, (C22×C4).1420C23, C42⋊C2.43C22, C22.21(C4.4D4), C2.45(C42⋊C22), (C2×M4(2)).327C22, C23.37C23.19C2, C2.8(C23.67C23), C2.45(C2×C4≀C2), (C4×C4⋊C4).26C2, C4⋊C4.93(C2×C4), (C2×C4).275(C2×Q8), (C2×C4).1548(C2×D4), (C2×C4).765(C4○D4), (C2×C4).434(C22×C4), (C2×C4).205(C22⋊C4), C22.295(C2×C22⋊C4), SmallGroup(128,718)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — M4(2)⋊7Q8
C1C2C22C23C22×C4C2×C42C4×M4(2) — M4(2)⋊7Q8
C1C2C2×C4 — M4(2)⋊7Q8
C1C2×C4C2×C42 — M4(2)⋊7Q8
C1C2C2C22×C4 — M4(2)⋊7Q8

Generators and relations for M4(2)⋊7Q8
 G = < a,b,c,d | a8=b2=c4=1, d2=c2, bab=a5, ac=ca, dad-1=a-1b, bc=cb, dbd-1=a4b, dcd-1=c-1 >

Subgroups: 236 in 130 conjugacy classes, 58 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×Q8, C2.C42, C4×C8, C8⋊C4, C2×C42, C2×C42, C2×C4⋊C4, C42⋊C2, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, C2×M4(2), C426C4, C4×C4⋊C4, C4×M4(2), C23.37C23, M4(2)⋊7Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C4≀C2, C2×C22⋊C4, C4×Q8, C22⋊Q8, C4.4D4, C4⋊Q8, C23.67C23, C2×C4≀C2, C42⋊C22, M4(2)⋊7Q8

Smallest permutation representation of M4(2)⋊7Q8
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 27)(2 32)(3 29)(4 26)(5 31)(6 28)(7 25)(8 30)(9 21)(10 18)(11 23)(12 20)(13 17)(14 22)(15 19)(16 24)
(1 24 27 16)(2 17 28 9)(3 18 29 10)(4 19 30 11)(5 20 31 12)(6 21 32 13)(7 22 25 14)(8 23 26 15)
(1 17 27 9)(2 16 28 24)(3 19 29 11)(4 10 30 18)(5 21 31 13)(6 12 32 20)(7 23 25 15)(8 14 26 22)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24), (1,24,27,16)(2,17,28,9)(3,18,29,10)(4,19,30,11)(5,20,31,12)(6,21,32,13)(7,22,25,14)(8,23,26,15), (1,17,27,9)(2,16,28,24)(3,19,29,11)(4,10,30,18)(5,21,31,13)(6,12,32,20)(7,23,25,15)(8,14,26,22)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24), (1,24,27,16)(2,17,28,9)(3,18,29,10)(4,19,30,11)(5,20,31,12)(6,21,32,13)(7,22,25,14)(8,23,26,15), (1,17,27,9)(2,16,28,24)(3,19,29,11)(4,10,30,18)(5,21,31,13)(6,12,32,20)(7,23,25,15)(8,14,26,22) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,27),(2,32),(3,29),(4,26),(5,31),(6,28),(7,25),(8,30),(9,21),(10,18),(11,23),(12,20),(13,17),(14,22),(15,19),(16,24)], [(1,24,27,16),(2,17,28,9),(3,18,29,10),(4,19,30,11),(5,20,31,12),(6,21,32,13),(7,22,25,14),(8,23,26,15)], [(1,17,27,9),(2,16,28,24),(3,19,29,11),(4,10,30,18),(5,21,31,13),(6,12,32,20),(7,23,25,15),(8,14,26,22)]])

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4J4K···4T4U4V4W4X8A···8H
order12222244444···44···444448···8
size11112211112···24···488884···4

38 irreducible representations

dim1111111222224
type++++++-+
imageC1C2C2C2C2C4C4D4Q8D4C4○D4C4≀C2C42⋊C22
kernelM4(2)⋊7Q8C426C4C4×C4⋊C4C4×M4(2)C23.37C23C42.C2C4⋊Q8C42M4(2)C22×C4C2×C4C4C2
# reps1411144242482

Matrix representation of M4(2)⋊7Q8 in GL4(𝔽17) generated by

0100
13000
00138
00134
,
1000
01600
00160
00016
,
16000
01600
00115
00116
,
01300
4000
0040
00413
G:=sub<GL(4,GF(17))| [0,13,0,0,1,0,0,0,0,0,13,13,0,0,8,4],[1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,1,0,0,15,16],[0,4,0,0,13,0,0,0,0,0,4,4,0,0,0,13] >;

M4(2)⋊7Q8 in GAP, Magma, Sage, TeX

M_4(2)\rtimes_7Q_8
% in TeX

G:=Group("M4(2):7Q8");
// GroupNames label

G:=SmallGroup(128,718);
// by ID

G=gap.SmallGroup(128,718);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,400,422,100,1018,248,2028]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=1,d^2=c^2,b*a*b=a^5,a*c=c*a,d*a*d^-1=a^-1*b,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽