Extensions 1→N→G→Q→1 with N=C22 and Q=M5(2)

Direct product G=N×Q with N=C22 and Q=M5(2)

Semidirect products G=N:Q with N=C22 and Q=M5(2)
extensionφ:Q→Aut NdρLabelID
C221M5(2) = C169D4φ: M5(2)/C16C2 ⊆ Aut C2264C2^2:1M5(2)128,900
C222M5(2) = C24.5C8φ: M5(2)/C2×C8C2 ⊆ Aut C2232C2^2:2M5(2)128,844

Non-split extensions G=N.Q with N=C22 and Q=M5(2)
extensionφ:Q→Aut NdρLabelID
C22.1M5(2) = D4.C16φ: M5(2)/C16C2 ⊆ Aut C22642C2^2.1M5(2)128,133
C22.2M5(2) = C23⋊C16φ: M5(2)/C2×C8C2 ⊆ Aut C2232C2^2.2M5(2)128,46
C22.3M5(2) = C22.M5(2)φ: M5(2)/C2×C8C2 ⊆ Aut C2264C2^2.3M5(2)128,54
C22.4M5(2) = C32⋊C4φ: M5(2)/C2×C8C2 ⊆ Aut C22324C2^2.4M5(2)128,130
C22.5M5(2) = C8.C16φ: M5(2)/C2×C8C2 ⊆ Aut C22322C2^2.5M5(2)128,154
C22.6M5(2) = C42.6C8φ: M5(2)/C2×C8C2 ⊆ Aut C2264C2^2.6M5(2)128,895
C22.7M5(2) = C22.7M5(2)central extension (φ=1)128C2^2.7M5(2)128,106
C22.8M5(2) = C2×C165C4central extension (φ=1)128C2^2.8M5(2)128,838
C22.9M5(2) = C2×C22⋊C16central extension (φ=1)64C2^2.9M5(2)128,843
C22.10M5(2) = C2×C4⋊C16central extension (φ=1)128C2^2.10M5(2)128,881