Copied to
clipboard

G = C2×C165C4order 128 = 27

Direct product of C2 and C165C4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×C165C4, C42.5C8, C8.22C42, C22.8M5(2), (C2×C16)⋊16C4, C1612(C2×C4), C8.24(C2×C8), C4.15(C4×C8), (C4×C8).36C4, (C2×C8).17C8, C8(C165C4), C4(C165C4), (C22×C4).9C8, C4.35(C2×C42), C22.17(C4×C8), C8.65(C22×C4), (C22×C8).45C4, (C2×C4).90C42, C4.34(C22×C8), (C2×C42).39C4, C23.44(C2×C8), C2.1(C2×M5(2)), C42.296(C2×C4), (C22×C16).16C2, (C2×C8).620C23, (C4×C8).433C22, (C2×C16).103C22, C22.23(C22×C8), (C22×C8).591C22, C2.10(C2×C4×C8), (C2×C4×C8).64C2, (C2×C4).63(C2×C8), (C2×C8)(C165C4), (C2×C4)(C165C4), (C2×C8).245(C2×C4), (C22×C4).505(C2×C4), (C2×C4).605(C22×C4), SmallGroup(128,838)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C2×C165C4
C1C2C4C2×C4C2×C8C22×C8C2×C4×C8 — C2×C165C4
C1C2 — C2×C165C4
C1C22×C8 — C2×C165C4
C1C2C2C2C2C4C4C2×C8 — C2×C165C4

Generators and relations for C2×C165C4
 G = < a,b,c | a2=b16=c4=1, ab=ba, ac=ca, cbc-1=b9 >

Subgroups: 108 in 100 conjugacy classes, 92 normal (16 characteristic)
C1, C2, C2 [×6], C4 [×2], C4 [×2], C4 [×4], C22, C22 [×6], C8 [×8], C2×C4 [×2], C2×C4 [×8], C2×C4 [×4], C23, C16 [×8], C42 [×4], C2×C8 [×2], C2×C8 [×10], C22×C4, C22×C4 [×2], C4×C8 [×4], C2×C16 [×12], C2×C42, C22×C8 [×2], C165C4 [×4], C2×C4×C8, C22×C16 [×2], C2×C165C4
Quotients: C1, C2 [×7], C4 [×12], C22 [×7], C8 [×8], C2×C4 [×18], C23, C42 [×4], C2×C8 [×12], C22×C4 [×3], C4×C8 [×4], M5(2) [×4], C2×C42, C22×C8 [×2], C165C4 [×4], C2×C4×C8, C2×M5(2) [×2], C2×C165C4

Smallest permutation representation of C2×C165C4
Regular action on 128 points
Generators in S128
(1 62)(2 63)(3 64)(4 49)(5 50)(6 51)(7 52)(8 53)(9 54)(10 55)(11 56)(12 57)(13 58)(14 59)(15 60)(16 61)(17 102)(18 103)(19 104)(20 105)(21 106)(22 107)(23 108)(24 109)(25 110)(26 111)(27 112)(28 97)(29 98)(30 99)(31 100)(32 101)(33 125)(34 126)(35 127)(36 128)(37 113)(38 114)(39 115)(40 116)(41 117)(42 118)(43 119)(44 120)(45 121)(46 122)(47 123)(48 124)(65 95)(66 96)(67 81)(68 82)(69 83)(70 84)(71 85)(72 86)(73 87)(74 88)(75 89)(76 90)(77 91)(78 92)(79 93)(80 94)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 119 91 107)(2 128 92 100)(3 121 93 109)(4 114 94 102)(5 123 95 111)(6 116 96 104)(7 125 81 97)(8 118 82 106)(9 127 83 99)(10 120 84 108)(11 113 85 101)(12 122 86 110)(13 115 87 103)(14 124 88 112)(15 117 89 105)(16 126 90 98)(17 49 38 80)(18 58 39 73)(19 51 40 66)(20 60 41 75)(21 53 42 68)(22 62 43 77)(23 55 44 70)(24 64 45 79)(25 57 46 72)(26 50 47 65)(27 59 48 74)(28 52 33 67)(29 61 34 76)(30 54 35 69)(31 63 36 78)(32 56 37 71)

G:=sub<Sym(128)| (1,62)(2,63)(3,64)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,102)(18,103)(19,104)(20,105)(21,106)(22,107)(23,108)(24,109)(25,110)(26,111)(27,112)(28,97)(29,98)(30,99)(31,100)(32,101)(33,125)(34,126)(35,127)(36,128)(37,113)(38,114)(39,115)(40,116)(41,117)(42,118)(43,119)(44,120)(45,121)(46,122)(47,123)(48,124)(65,95)(66,96)(67,81)(68,82)(69,83)(70,84)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,119,91,107)(2,128,92,100)(3,121,93,109)(4,114,94,102)(5,123,95,111)(6,116,96,104)(7,125,81,97)(8,118,82,106)(9,127,83,99)(10,120,84,108)(11,113,85,101)(12,122,86,110)(13,115,87,103)(14,124,88,112)(15,117,89,105)(16,126,90,98)(17,49,38,80)(18,58,39,73)(19,51,40,66)(20,60,41,75)(21,53,42,68)(22,62,43,77)(23,55,44,70)(24,64,45,79)(25,57,46,72)(26,50,47,65)(27,59,48,74)(28,52,33,67)(29,61,34,76)(30,54,35,69)(31,63,36,78)(32,56,37,71)>;

G:=Group( (1,62)(2,63)(3,64)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,102)(18,103)(19,104)(20,105)(21,106)(22,107)(23,108)(24,109)(25,110)(26,111)(27,112)(28,97)(29,98)(30,99)(31,100)(32,101)(33,125)(34,126)(35,127)(36,128)(37,113)(38,114)(39,115)(40,116)(41,117)(42,118)(43,119)(44,120)(45,121)(46,122)(47,123)(48,124)(65,95)(66,96)(67,81)(68,82)(69,83)(70,84)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,119,91,107)(2,128,92,100)(3,121,93,109)(4,114,94,102)(5,123,95,111)(6,116,96,104)(7,125,81,97)(8,118,82,106)(9,127,83,99)(10,120,84,108)(11,113,85,101)(12,122,86,110)(13,115,87,103)(14,124,88,112)(15,117,89,105)(16,126,90,98)(17,49,38,80)(18,58,39,73)(19,51,40,66)(20,60,41,75)(21,53,42,68)(22,62,43,77)(23,55,44,70)(24,64,45,79)(25,57,46,72)(26,50,47,65)(27,59,48,74)(28,52,33,67)(29,61,34,76)(30,54,35,69)(31,63,36,78)(32,56,37,71) );

G=PermutationGroup([(1,62),(2,63),(3,64),(4,49),(5,50),(6,51),(7,52),(8,53),(9,54),(10,55),(11,56),(12,57),(13,58),(14,59),(15,60),(16,61),(17,102),(18,103),(19,104),(20,105),(21,106),(22,107),(23,108),(24,109),(25,110),(26,111),(27,112),(28,97),(29,98),(30,99),(31,100),(32,101),(33,125),(34,126),(35,127),(36,128),(37,113),(38,114),(39,115),(40,116),(41,117),(42,118),(43,119),(44,120),(45,121),(46,122),(47,123),(48,124),(65,95),(66,96),(67,81),(68,82),(69,83),(70,84),(71,85),(72,86),(73,87),(74,88),(75,89),(76,90),(77,91),(78,92),(79,93),(80,94)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,119,91,107),(2,128,92,100),(3,121,93,109),(4,114,94,102),(5,123,95,111),(6,116,96,104),(7,125,81,97),(8,118,82,106),(9,127,83,99),(10,120,84,108),(11,113,85,101),(12,122,86,110),(13,115,87,103),(14,124,88,112),(15,117,89,105),(16,126,90,98),(17,49,38,80),(18,58,39,73),(19,51,40,66),(20,60,41,75),(21,53,42,68),(22,62,43,77),(23,55,44,70),(24,64,45,79),(25,57,46,72),(26,50,47,65),(27,59,48,74),(28,52,33,67),(29,61,34,76),(30,54,35,69),(31,63,36,78),(32,56,37,71)])

80 conjugacy classes

class 1 2A···2G4A···4H4I···4P8A···8P8Q···8X16A···16AF
order12···24···44···48···88···816···16
size11···11···12···21···12···22···2

80 irreducible representations

dim111111111112
type++++
imageC1C2C2C2C4C4C4C4C8C8C8M5(2)
kernelC2×C165C4C165C4C2×C4×C8C22×C16C4×C8C2×C16C2×C42C22×C8C42C2×C8C22×C4C22
# reps141241622816816

Matrix representation of C2×C165C4 in GL4(𝔽17) generated by

16000
01600
00160
00016
,
9000
01600
00215
001515
,
4000
01600
00016
0010
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[9,0,0,0,0,16,0,0,0,0,2,15,0,0,15,15],[4,0,0,0,0,16,0,0,0,0,0,1,0,0,16,0] >;

C2×C165C4 in GAP, Magma, Sage, TeX

C_2\times C_{16}\rtimes_5C_4
% in TeX

G:=Group("C2xC16:5C4");
// GroupNames label

G:=SmallGroup(128,838);
// by ID

G=gap.SmallGroup(128,838);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,56,925,120,136,124]);
// Polycyclic

G:=Group<a,b,c|a^2=b^16=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^9>;
// generators/relations

׿
×
𝔽