Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4⋊C8

Direct product G=N×Q with N=C2 and Q=C2×C4⋊C8
dρLabelID
C22×C4⋊C8128C2^2xC4:C8128,1634


Non-split extensions G=N.Q with N=C2 and Q=C2×C4⋊C8
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4⋊C8) = C2×C22.7C42central extension (φ=1)128C2.1(C2xC4:C8)128,459
C2.2(C2×C4⋊C8) = C4×C4⋊C8central extension (φ=1)128C2.2(C2xC4:C8)128,498
C2.3(C2×C4⋊C8) = C2×C4⋊C16central extension (φ=1)128C2.3(C2xC4:C8)128,881
C2.4(C2×C4⋊C8) = C2×C82C8central stem extension (φ=1)128C2.4(C2xC4:C8)128,294
C2.5(C2×C4⋊C8) = C2×C81C8central stem extension (φ=1)128C2.5(C2xC4:C8)128,295
C2.6(C2×C4⋊C8) = C42.42Q8central stem extension (φ=1)64C2.6(C2xC4:C8)128,296
C2.7(C2×C4⋊C8) = M4(2)⋊1C8central stem extension (φ=1)64C2.7(C2xC4:C8)128,297
C2.8(C2×C4⋊C8) = C42.425D4central stem extension (φ=1)64C2.8(C2xC4:C8)128,529
C2.9(C2×C4⋊C8) = C428C8central stem extension (φ=1)128C2.9(C2xC4:C8)128,563
C2.10(C2×C4⋊C8) = C429C8central stem extension (φ=1)128C2.10(C2xC4:C8)128,574
C2.11(C2×C4⋊C8) = C23.21M4(2)central stem extension (φ=1)64C2.11(C2xC4:C8)128,582
C2.12(C2×C4⋊C8) = C42.61Q8central stem extension (φ=1)128C2.12(C2xC4:C8)128,671
C2.13(C2×C4⋊C8) = C4⋊M5(2)central stem extension (φ=1)64C2.13(C2xC4:C8)128,882
C2.14(C2×C4⋊C8) = C4⋊C4.7C8central stem extension (φ=1)64C2.14(C2xC4:C8)128,883
C2.15(C2×C4⋊C8) = C2×C8.C8central stem extension (φ=1)32C2.15(C2xC4:C8)128,884
C2.16(C2×C4⋊C8) = M4(2).1C8central stem extension (φ=1)324C2.16(C2xC4:C8)128,885

׿
×
𝔽